ﻻ يوجد ملخص باللغة العربية
The high temperature superconductivity in single-unit-cell (1UC) FeSe on SrTiO3 (STO)(001) and the observation of replica bands by angle-resolved photoemission spectroscopy (ARPES) have led to the conjecture that the coupling between FeSe electron and the STO phonon is responsible for the enhancement of Tc over other FeSe-based superconductors1,2. However the recent observation of a similar superconducting gap in FeSe grown on the (110) surface of STO raises the question of whether a similar mechanism applies3,4. Here we report the ARPES study of the electronic structure of FeSe grown on STO(110). Similar to the results in FeSe/STO(001), clear replica bands are observed. We also present a comparative study of STO (001) and STO(110) bare surfaces, where photo doping generates metallic surface states. Similar replica bands separating from the main band by approximately the same energy are observed, indicating this coupling is a generic feature of the STO surfaces and interfaces. Our findings suggest that the large superconducting gaps observed in FeSe films grown on two different STO surface terminations are likely enhanced by a common coupling between FeSe electrons and STO phonons.
Coupling between electrons and phonons (lattice vibrations) drives the formation of the electron pairs responsible for conventional superconductivity. The lack of direct evidence for electron-phonon coupling in the electron dynamics of the high trans
The superconductor at the LaAlO3-SrTiO3 interface provides a model system for the study of two-dimensional superconductivity in the dilute carrier density limit. Here we experimentally address the pairing mechanism in this superconductor. We extract
We show that the superconducting transition temperature Tc of FeSe1-xTex can be computed to reasonable values in a modified McMillan approach in which the electron-phonon coupling is amplified by the antiferromagnetism and the out-of-plane phonons tr
Interface charge transfer and electron-phonon coupling have been suggested to play a crucial role in the recently discovered high-temperature superconductivity of single unit-cell FeSe films on SrTiO3. However, their origin remains elusive. Here, usi
The title compound is investigated by specific heat measurements in the normal and superconducting state supplemented by upper critical field transport, susceptibility and magnetization measurements. From a detailed analysis including also full poten