ﻻ يوجد ملخص باللغة العربية
In fermionic systems, superconductivity and superfluidity are enabled through the condensation of fermion pairs. The nature of this condensate can be tuned by varying the pairing strength, with weak coupling yielding a BCS-like condensate and strong coupling resulting in a BEC-like process. However, demonstration of this cross-over has remained elusive in electronic systems. Here we study graphene double-layers separated by an atomically thin insulator. Under applied magnetic field, electrons and holes couple across the barrier to form bound magneto-excitons whose pairing strength can be continuously tuned by varying the effective layer separation. Using temperature-dependent Coulomb drag and counter-flow current measurements, we demonstrate the capability to tune the magneto-exciton condensate through the entire weak-coupling to strong-coupling phase diagram. Our results establish magneto-exciton condensates in graphene as a model platform to study the crossover between two Bosonic quantum condensate phases in a solid state system.
We consider two weakly coupled Richardson models to study the formation of a relative phase and the Josephson dynamics between two mesoscopic attractively interacting fermionic systems: our results apply to superconducting properties of coupled ultra
Dynamical processes induced by the external time-dependent fields can provide valuable insight into the characteristic energy scales of a given physical system. We investigate them here in a nanoscopic heterostructure, consisting of the double quantu
We have performed angle-resolved photoemission spectroscopy of the strongly spin-orbit coupled low-carrier density superconductor Sn1-xInxTe (x = 0.045) to elucidate the electronic states relevant to the possible occurrence of topological superconduc
Our goal is to understand the phenomena arising in optical lattice fermions at low temperature in an external magnetic field. Varying the field, the attraction between any two fermions can be made arbitrarily strong, where composite bosons form via s
In the context of describing electrons in solids as a fluid in the hydrodynamic regime, we consider a flow of electrons in a channel of finite width, i.e.~a Poiseuille flow. The electrons are accelerated by a constant electric field. We develop the a