ترغب بنشر مسار تعليمي؟ اضغط هنا

Composite Fermions and their Pair States in a Strongly-Coupled Fermi Liquid

68   0   0.0 ( 0 )
 نشر من قبل She-Sheng Xue
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Our goal is to understand the phenomena arising in optical lattice fermions at low temperature in an external magnetic field. Varying the field, the attraction between any two fermions can be made arbitrarily strong, where composite bosons form via so-called Feshbach resonances. By setting up strong-coupling equations for fermions, we find that in spatial dimension $d>2$ they couple to bosons which dress up fermions and lead to new massive composite fermions. At low enough temperature, we obtain the critical temperature at which composite bosons undergo the Bose-Einstein condensate (BEC), leading to BEC-dressing massive fermions. These form tightly bound pair states which are new bosonic quasi-particles producing a BEC-type condensate. A quantum critical point is found and the formation of condensates of complex quasi-particles is speculated over.



قيم البحث

اقرأ أيضاً

We present real-space dynamical mean-field theory calculations for attractively interacting fermions in three-dimensional lattices with elongated traps. The critical polarization is found to be 0.8, regardless of the trap elongation. Below the critic al polarization, we find unconventional superfluid structures where the polarized superfluid and Fulde-Ferrell-Larkin-Ovchinnikov-type states emerge across the entire core region.
We consider the density response of a trapped two-component Fermi gas. Combining the Bogoliubov-deGennes method with the random phase approximation allows the study of both collective and single particle excitations. Calculating the density response across a wide range of interactions, we observe a crossover from a weakly interacting pair vibration mode to a strongly interacting Goldstone mode. The crossover is associated with a depressed collective mode frequency and an increased damping rate, in agreement with density response experiments performed in strongly interacting atomic gases.
227 - Fan Wu , Guang-Can Guo , Wei Zhang 2013
We study the phase diagram in a two-dimensional Fermi gas with the synthetic spin-orbit coupling that has recently been realized experimentally. In particular, we characterize in detail the properties and the stability region of the unconventional Fu lde-Ferrell-Larkin-Ovchinnikov (FFLO) states in such a system, which are induced by spin-orbit coupling and Fermi surface asymmetry. We identify several distinct nodal FFLO states by studying the topology of their respective gapless contours in momentum space. We then examine the phase structure and the number density distributions in a typical harmonic trapping potential under the local density approximation. Our studies provide detailed information on the FFLO pairing states with spin-orbit coupling and Fermi surface asymmetry, and will facilitate experimental detection of these interesting pairing states in the future.
204 - Shaoyu Yin , J.-P. Martikainen , 2013
We study the superfluid properties of two-dimensional spin-population-imbalanced Fermi gases to explore the interplay between the Berezinskii-Kosterlitz-Thouless (BKT) phase transition and the possible instability towards the Fulde-Ferrell (FF) state . By the mean-field approximation together with quantum fluctuations, we obtain phase diagrams as functions of temperature, chemical potential imbalance and binding energy. We find that the fluctuations change the mean-field phase diagram significantly. We also address possible effects of the phase separation and/or the anisotropic FF phase to the BKT mechanism. The superfluid density tensor of the FF state is obtained, and its transverse component is found always vanishing. This causes divergent fluctuations and possibly precludes the existence of the FF state at any non-zero temperature.
542 - Shunji Tsuchiya , R. Ganesh , 2013
We study the Higgs amplitude mode in the s-wave superfluid state on the honeycomb lattice inspired by recent cold atom experiments. We consider the attractive Hubbard model and focus on the vicinity of a quantum phase transition between semi-metal an d superfluid phases. On either side of the transition, we find collective mode excitations that are stable against decay into quasiparticle-pairs. In the semi-metal phase, the collective modes have Cooperon and exciton character. These modes smoothly evolve across the quantum phase transition, and become the Anderson-Bogoliubov mode and the Higgs mode of the superfluid phase. The collective modes are accommodated within a window in the quasiparticle-pair continuum, which arises as a consequence of the linear Dirac dispersion on the honeycomb lattice, and allows for sharp collective excitations. Bragg scattering can be used to measure these excitations in cold atom experiments, providing a rare example wherein collective modes can be tracked across a quantum phase transition.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا