ترغب بنشر مسار تعليمي؟ اضغط هنا

Subgap dynamics of double quantum dot coupled between superconducting and normal leads

124   0   0.0 ( 0 )
 نشر من قبل Tadeusz Domanski
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Dynamical processes induced by the external time-dependent fields can provide valuable insight into the characteristic energy scales of a given physical system. We investigate them here in a nanoscopic heterostructure, consisting of the double quantum dot coupled in series to the superconducting and the metallic reservoirs, analyzing its response to (i)~abrupt bias voltage applied across the junction, (ii) sudden change of the energy levels, and imposed by (iii)~their periodic driving. We explore subgap properties of this setup which are strictly related to the in-gap quasiparticles and discuss their signatures manifested in the time-dependent charge currents. The characteristic multi-mode oscillations, their beating patters and photon-assisted harmonics reveal a rich spectrum of dynamical features that might be important for designing the superconducting qubits.



قيم البحث

اقرأ أيضاً

123 - B. Baran , T. Domanski 2019
We investigate subgap quasiparticles of a single level quantum dot coupled to the superconducting and normal leads, whose energy level is periodically driven by external potential. Using the Floquet formalism we determine the quasienergies and analyz e redistribution of their spectral weights between individual harmonics upon varying the frequency and amplitude of the driving potential. We also propose feasible spectroscopic methods for probing the in-gap quasiparticles observable in the differential conductance of the charge current averaged over a period of oscillations.
We demonstrate direct transport between two opposing sets of Yu-Shiba-Rusinov (YSR) subgap states realized in a double quantum dot. This sub-gap transport relies on intrinsic quasiparticle relaxation, but the tunability of the device allows us to exp lore also an additional relaxation mechanism based on charge transferring Andreev reflections. The transition between these two relaxation regimes is identified in the experiment as a marked gate-induced stepwise change in conductance. We present a transport calculation, including YSR bound states and multiple Andreev reflections alongside with quasiparticle relaxation, due to a weak tunnel coupling to a nearby normal metal, and obtain excellent agreement with the data.
We study the transient phenomena appearing in a subgap region of the double quantum dot coupled in series between the superconducting and normal metallic leads, focusing on the development of the superconducting proximity effect. For the uncorrelated nanostructure we derive explicit expressions of the time-dependent occupancies in both quantum dots, charge currents, and electron pairing induced on individual dots and between them. We show that the initial configurations substantially affect the dynamical processes, in which the in-gap bound states emerge upon coupling the double quantum dot to superconducting reservoir. In particular, the superconducting proximity effect would be temporarily blocked whenever the quantum dots are initially singly occupied. Such {it triplet}/{it Andreev blockade} has been recently reported experimentally for double quantum dots embedded in the Josephson [D. Bouman et al., Phys. Rev. B 102, 220505 (2020)] and Andreev [P. Zhang et al., arXiv:2102.03283 (2021)] junctions. We also address the role of correlation effects within the lowest-order decoupling scheme and by the time-dependent numerical renormalization group calculations. Competition of the repulsive Coulomb interactions with the superconducting proximity effect leads to renormalization of the in-gap quasiparticles, speeding up the quantum oscillations and narrowing a region of transient phenomena, whereas the dynamical Andreev blockade is well pronounced in the weak inter-dot coupling limit. We propose feasible methods for detecting the characteristic time-scales that could be observable by the Andreev spectroscopy.
We analyze the magnetic and transport properties of a double quantum dot coupled to superconducting leads. In addition to the possible phase transition to a $pi$ state, already present in the single dot case, this system exhibits a richer magnetic be havior due to the competition between Kondo and inter-dot antiferromagnetic coupling. We obtain results for the Josephson current which may help to understand recent experiments on superconductor-metallofullerene dimer junctions. We show that in such a system the Josephson effect can be used to control its magnetic configuration.
In fermionic systems, superconductivity and superfluidity are enabled through the condensation of fermion pairs. The nature of this condensate can be tuned by varying the pairing strength, with weak coupling yielding a BCS-like condensate and strong coupling resulting in a BEC-like process. However, demonstration of this cross-over has remained elusive in electronic systems. Here we study graphene double-layers separated by an atomically thin insulator. Under applied magnetic field, electrons and holes couple across the barrier to form bound magneto-excitons whose pairing strength can be continuously tuned by varying the effective layer separation. Using temperature-dependent Coulomb drag and counter-flow current measurements, we demonstrate the capability to tune the magneto-exciton condensate through the entire weak-coupling to strong-coupling phase diagram. Our results establish magneto-exciton condensates in graphene as a model platform to study the crossover between two Bosonic quantum condensate phases in a solid state system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا