ﻻ يوجد ملخص باللغة العربية
We obtain several fundamental results on finite index ideals and additive subgroups of rings as well as on model-theoretic connected components of rings, which concern generating in finitely many steps inside additive groups of rings. Let $R$ be any ring equipped with an arbitrary additional first order structure, and $A$ a set of parameters. We show that whenever $H$ is an $A$-definable, finite index subgroup of $(R,+)$, then $H+RH$ contains an $A$-definable, two-sided ideal of finite index. As a corollary, we positively answer Question 3.9 of [Bohr compactifications of groups and rings, J. Gismatullin, G. Jagiella and K. Krupinski]: if $R$ is unital, then $(bar R,+)^{00}_A + bar R cdot (bar R,+)^{00}_A + bar R cdot (bar R,+)^{00}_A = bar R^{00}_A$, where $bar R succ R$ is a sufficiently saturated elementary extension of $R$, and $(bar R,+)^{00}_A$ [resp. $bar R^{00}_A$] is the smallest $A$-type-definable, bounded index additive subgroup [resp. ideal] of $bar R$. This implies that $bar R^{00}_A=bar R^{000}_A$, where $bar R^{000}_A$ is the smallest invariant over $A$, bounded index ideal of $bar R$. If $R$ is of finite characteristic (not necessarily unital), we get a sharper result: $(bar R,+)^{00}_A + bar R cdot (bar R,+)^{00}_A = bar R^{00}_A$. We obtain similar results for finitely generated (not necessarily unital) rings and for topological rings. The above results imply that the simplified descriptions of the definable (so also classical) Bohr compactifications of triangular groups over unital rings obtained in Corollary 3.5 of the aforementioned paper are valid for all unital rings. We analyze many examples, where we compute the number of steps needed to generate a group by $(bar R cup {1}) cdot (bar R,+)^{00}_A$ and study related aspects, showing optimality of some of our main results and answering some natural questions.
Using the tools of reverse mathematics in second-order arithmetic, as developed by Friedman, Simpson, and others, we determine the axioms necessary to develop various topics in commutative ring theory. Our main contributions to the field are as follo
Given a dense additive subgroup $G$ of $mathbb R$ containing $mathbb Z$, we consider its intersection $mathbb G$ with the interval $[0,1[$ with the induced order and the group structure given by addition modulo $1$. We axiomatize the theory of $mathb
Let $R$ be a commutative ring with identity. In this paper, we introduce the concept of weakly $1$-absorbing prime ideals which is a generalization of weakly prime ideals. A proper ideal $I$ of $R$ is called weakly $1$-absorbing prime if for all nonu
We show that there is a low T-upper bound for the class of K-trivial sets, namely those which are weak from the point of view of algorithmic randomness. This result is a special case of a more general characterization of ideals in the T-degrees below 0 for which there is a low T-upper bound.
Let $Lsubset mathbb{Z}^n$ be a lattice and $I_L=langle x^{bf u}-x^{bf v}: {bf u}-{bf v}in Lrangle$ be the corresponding lattice ideal in $Bbbk[x_1,ldots, x_n]$, where $Bbbk$ is a field. In this paper we describe minimal binomial generating sets of $I