ﻻ يوجد ملخص باللغة العربية
Using the tools of reverse mathematics in second-order arithmetic, as developed by Friedman, Simpson, and others, we determine the axioms necessary to develop various topics in commutative ring theory. Our main contributions to the field are as follows. We look at fundamental results concerning primary ideals and the radical of an ideal, concepts previously unstudied in reverse mathematics. Then we turn to a fine-grained analysis of four different definitions of Noetherian in the weak base system $mathsf{RCA}_0 + mathsf{I}Sigma_2$. Finally, we begin a systematic study of various types of integral domains: PIDs, UFDs and Bezout and GCD domains.
Let $S$ be the group of finitely supported permutations of a countably infinite set. Let $K[S]$ be the group algebra of $S$ over a field $K$ of characteristic $0$. According to a theorem of Formanek and Lawrence, $K[S]$ satisfies the ascending chain
In this paper we study the reverse mathematics of two theorems by Bonnet about partial orders. These results concern the structure and cardinality of the collection of the initial intervals. The first theorem states that a partial order has no infini
We investigate the strength of a randomness notion $mathcal R$ as a set-existence principle in second-order arithmetic: for each $Z$ there is an $X$ that is $mathcal R$-random relative to $Z$. We show that the equivalence between $2$-randomness and b
Ramseys theorem for pairs asserts that every 2-coloring of the pairs of integers has an infinite monochromatic subset. In this paper, we study a strengthening of Ramseys theorem for pairs due to Erdos and Rado, which states that every 2-coloring of t
We introduce the notion of tau-like partial order, where tau is one of the linear order types omega, omega*, omega+omega*, and zeta. For example, being omega-like means that every element has finitely many predecessors, while being zeta-like means th