ﻻ يوجد ملخص باللغة العربية
We show that there is a low T-upper bound for the class of K-trivial sets, namely those which are weak from the point of view of algorithmic randomness. This result is a special case of a more general characterization of ideals in the T-degrees below 0 for which there is a low T-upper bound.
We study the extremal Betti numbers of the class of $t$--spread strongly stable ideals. More precisely, we determine the maximal number of admissible extremal Betti numbers for such ideals, and thereby we generalize the known results for $tin {1,2}$.
We obtain several fundamental results on finite index ideals and additive subgroups of rings as well as on model-theoretic connected components of rings, which concern generating in finitely many steps inside additive groups of rings. Let $R$ be an
We show that any space with a positive upper curvature bound has in a small neighborhood of any point a closely related metric with a negative upper curvature bound.
Suppose that a solution $widetilde{mathbf{x}}$ to an underdetermined linear system $mathbf{b} = mathbf{A} mathbf{x}$ is given. $widetilde{mathbf{x}}$ is approximately sparse meaning that it has a few large components compared to other small entries.
Let $q$ be a power of a prime $p$, let $k$ be a nontrivial divisor of $q-1$ and write $e=(q-1)/k$. We study upper bounds for cyclotomic numbers $(a,b)$ of order $e$ over the finite field $mathbb{F}_q$. A general result of our study is that $(a,b)leq