ﻻ يوجد ملخص باللغة العربية
A subset $A$ of the $k$-dimensional grid ${1,2, cdots, N}^k$ is called $k$-dimensional corner-free if it does not contain a set of points of the form ${ a } cup { a + de_i : 1 leq i leq k }$ for some $a in {1,2, cdots, N}^k$ and $d > 0$, where $e_1,e_2, cdots, e_k$ is the standard basis of $mathbb{R}^k$. We define the maximum size of a $k$-dimensional corner-free subset of ${1,2, cdots, N}^k$ by $c_k(N)$. In this paper, we show that the number of $k$-dimensional corner-free subsets of the $k$-dimensional grid ${1,2, cdots, N}^k$ is at most $2^{O(c_k(N))}$ for infinitely many values of $N$. Our main tool for the proof is a supersaturation result for $k$-dimensional corners in sets of size $Theta(c_k(N))$ and the hypergraph container method.
The areas of Ramsey theory and random graphs have been closely linked ever since ErdH{o}s famous proof in 1947 that the diagonal Ramsey numbers $R(k)$ grow exponentially in $k$. In the early 1990s, the triangle-free process was introduced as a model
The packet routing problem plays an essential role in communication networks. It involves how to transfer data from some origins to some destinations within a reasonable amount of time. In the $(ell,k)$-routing problem, each node can send at most $el
We determine the shape of all sum-free sets in ${1,dots,n}^2$ of size close to the maximum $frac{3}{5}n^2$, solving a problem of Elsholtz and Rackham. We show that all such asymptotic maximum sum-free sets lie completely in the stripe $frac{4}{5}n-o(
We count the ordered sum-free triplets of subsets in the group $mathbb{Z}/pmathbb{Z}$, i.e., the triplets $(A,B,C)$ of sets $A,B,C subset mathbb{Z}/pmathbb{Z}$ for which the equation $a+b=c$ has no solution with $ain A$, $b in B$ and $c in C$. Our ma
A subfamily ${F_1,F_2,dots,F_{|P|}}subseteq mathcal F$ is a copy of the poset $P$ if there exists a bijection $i:Prightarrow {F_1,F_2,dots,F_{|P|}}$ such that $ple_P q$ implies $i(p)subseteq i(q)$. A family $mathcal F$ is $P$-free, if it does not con