ﻻ يوجد ملخص باللغة العربية
We consider the porous medium equation with a power-like reaction term, posed on Riemannian manifolds. Under certain assumptions on $p$ and $m$ in (1.1), and for small enough nonnegative initial data, we prove existence of global in time solutions, provided that the Sobolev inequality holds on the manifold. Furthermore, when both the Sobolev and the Poincare inequality hold, similar results hold under weaker assumptions on the forcing term. By the same functional analytic methods, we investigate global existence for solutions to the porous medium equation with source term and variable density in ${mathbb R}^n$.
We consider reaction-diffusion equations either posed on Riemannian manifolds or in the Euclidean weighted setting, with pow-er-type nonlinearity and slow diffusion of porous medium time. We consider the particularly delicate case $p<m$ in problem (1
We establish global-in-time existence results for thermodynamically consistent reaction-(cross-)diffusion systems coupled to an equation describing heat transfer. Our main interest is to model species-dependent diffusivities, while at the same time e
In this paper, we investigate the problem of blow up and sharp upper bound estimates of the lifespan for the solutions to the semilinear wave equations, posed on asymptotically Euclidean manifolds. Here the metric is assumed to be exponential perturb
We investigate the stability of time-periodic solutions of semilinear parabolic problems with Neumann boundary conditions. Such problems are posed on compact submanifolds evolving periodically in time. The discussion is based on the principal eigenva
We investigate the well-posedness of the fast diffusion equation (FDE) in a wide class of noncompact Riemannian manifolds. Existence and uniqueness of solutions for globally integrable initial data was established in [5]. However, in the Euclidean sp