ترغب بنشر مسار تعليمي؟ اضغط هنا

The blow up of solutions to semilinear wave equations on asymptotically Euclidean manifolds

133   0   0.0 ( 0 )
 نشر من قبل Chengbo Wang
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we investigate the problem of blow up and sharp upper bound estimates of the lifespan for the solutions to the semilinear wave equations, posed on asymptotically Euclidean manifolds. Here the metric is assumed to be exponential perturbation of the spherical symmetric, long range asymptotically Euclidean metric. One of the main ingredients in our proof is the construction of (unbounded) positive entire solutions for $Delta_{g}phi_lambda=lambda^{2}phi_lambda$, with certain estimates which are uniform for small parameter $lambdain (0,lambda_0)$. In addition, our argument works equally well for semilinear damped wave equations, when the coefficient of the dissipation term is integrable (without sign condition) and space-independent.



قيم البحث

اقرأ أيضاً

In this work, we investigate the problem of finite time blow up as well as the upper bound estimates of lifespan for solutions to small-amplitude semilinear wave equations with mixed nonlinearities $a |u_t|^p+b |u|^q$, posed on asymptotically Euclide an manifolds, which is related to both the Strauss conjecture and Glassey conjecture. In some cases, we obtain existence results, where the lower bound of the lifespan agrees with the upper bound in order. In addition, our results apply for semilinear damped wave equations, when the coefficient of the dissipation term is integrable (without sign condition) and space-independent.
In this paper we study the initial boundary value problem for two-dimensional semilinear wave equations with small data, in asymptotically Euclidean exterior domains. We prove that if $1<ple p_c(2)$, the problem admits almost the same upper bound of the lifespan as that of the corresponding Cauchy problem, only with a small loss for $1<ple 2$. It is interesting to see that the logarithmic increase of the harmonic function in $2$-D has no influence to the estimate of the upper bound of the lifespan for $2<ple p_c(2)$. One of the novelties is that we can deal with the problem with flat metric and general obstacles (bounded and simple connected), and it will be reduced to the corresponding problem with compact perturbation of the flat metric outside a ball.
176 - Mengyun Liu 2021
In this work, we investigate the problem of finite time blow up as well as the upper bound estimates of lifespan for solutions to small-amplitude semilinear wave equations with time dependent damping and potential, and mixed nonlinearities $c_1 |u_t| ^p+c_2 |u|^q$, posed on asymptotically Euclidean manifolds, which is related to both the Strauss conjecture and the Glassey conjecture.
We show that blow up of solutions with arbitrary positive initial energy of the Cauchy problem for the abstract wacve eqation of the form $Pu_{tt}+Au=F(u) (*)$ in a Hilbert space, where $P,A$ are positive linear operators and $F(cdot)$ is a continuo usly differentiable gradient operator can be obtained from the result of H.A. Levine on the growth of solutions of the Cauchy problem for (*). This result is applied to the study of inital boundary value problems for nonlinear Klein-Gordon equations, generalized Boussinesq equations and nonlinear plate equations. A result on blow up of solutions with positive initial energy of the initial boundary value problem for wave equation under nonlinear boundary condition is also obtained.
213 - Hailiang Liu , Jaemin Shin 2021
In this work, we study the behavior of blow-up solutions to the multidimensional restricted Euler--Poisson equations which are the localized version of the full Euler--Poisson system. We provide necessary conditions for the existence of finite-time b low-up solutions in terms of the initial data, and describe the asymptotic behavior of the solutions near blow up times. We also identify a rich set of the initial data which yields global bounded solutions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا