ﻻ يوجد ملخص باللغة العربية
Domain generalization aims at training machine learning models to perform robustly across different and unseen domains. Several recent methods use multiple datasets to train models to extract domain-invariant features, hoping to generalize to unseen domains. Instead, first we explicitly train domain-dependant representations by using ad-hoc batch normalization layers to collect independent domains statistics. Then, we propose to use these statistics to map domains in a shared latent space, where membership to a domain can be measured by means of a distance function. At test time, we project samples from an unknown domain into the same space and infer properties of their domain as a linear combination of the known ones. We apply the same mapping strategy at training and test time, learning both a latent representation and a powerful but lightweight ensemble model. We show a significant increase in classification accuracy over current state-of-the-art techniques on popular domain generalization benchmarks: PACS, Office-31 and Office-Caltech.
Deep Convolutional Neural Networks (DCNNs) are hard and time-consuming to train. Normalization is one of the effective solutions. Among previous normalization methods, Batch Normalization (BN) performs well at medium and large batch sizes and is with
A well-known issue of Batch Normalization is its significantly reduced effectiveness in the case of small mini-batch sizes. When a mini-batch contains few examples, the statistics upon which the normalization is defined cannot be reliably estimated f
Batch Normalization (BN) has been a standard component in designing deep neural networks (DNNs). Although the standard BN can significantly accelerate the training of DNNs and improve the generalization performance, it has several underlying limitati
Batch Normalization (BN)(Ioffe and Szegedy 2015) normalizes the features of an input image via statistics of a batch of images and hence BN will bring the noise to the gradient of the training loss. Previous works indicate that the noise is important
We investigate the reasons for the performance degradation incurred with batch-independent normalization. We find that the prototypical techniques of layer normalization and instance normalization both induce the appearance of failure modes in the ne