ﻻ يوجد ملخص باللغة العربية
Batch Normalization (BN) has been a standard component in designing deep neural networks (DNNs). Although the standard BN can significantly accelerate the training of DNNs and improve the generalization performance, it has several underlying limitations which may hamper the performance in both training and inference. In the training stage, BN relies on estimating the mean and variance of data using a single minibatch. Consequently, BN can be unstable when the batch size is very small or the data is poorly sampled. In the inference stage, BN often uses the so called moving mean and moving variance instead of batch statistics, i.e., the training and inference rules in BN are not consistent. Regarding these issues, we propose a memorized batch normalization (MBN), which considers multiple recent batches to obtain more accurate and robust statistics. Note that after the SGD update for each batch, the model parameters will change, and the features will change accordingly, leading to the Distribution Shift before and after the update for the considered batch. To alleviate this issue, we present a simple Double-Forward scheme in MBN which can further improve the performance. Compared to related methods, the proposed MBN exhibits consistent behaviors in both training and inference. Empirical results show that the MBN based models trained with the Double-Forward scheme greatly reduce the sensitivity of data and significantly improve the generalization performance.
Deep Convolutional Neural Networks (DCNNs) are hard and time-consuming to train. Normalization is one of the effective solutions. Among previous normalization methods, Batch Normalization (BN) performs well at medium and large batch sizes and is with
A well-known issue of Batch Normalization is its significantly reduced effectiveness in the case of small mini-batch sizes. When a mini-batch contains few examples, the statistics upon which the normalization is defined cannot be reliably estimated f
Domain generalization aims at training machine learning models to perform robustly across different and unseen domains. Several recent methods use multiple datasets to train models to extract domain-invariant features, hoping to generalize to unseen
Batch Normalization (BN)(Ioffe and Szegedy 2015) normalizes the features of an input image via statistics of a batch of images and hence BN will bring the noise to the gradient of the training loss. Previous works indicate that the noise is important
We investigate the reasons for the performance degradation incurred with batch-independent normalization. We find that the prototypical techniques of layer normalization and instance normalization both induce the appearance of failure modes in the ne