ﻻ يوجد ملخص باللغة العربية
We investigate the reasons for the performance degradation incurred with batch-independent normalization. We find that the prototypical techniques of layer normalization and instance normalization both induce the appearance of failure modes in the neural networks pre-activations: (i) layer normalization induces a collapse towards channel-wise constant functions; (ii) instance normalization induces a lack of variability in instance statistics, symptomatic of an alteration of the expressivity. To alleviate failure mode (i) without aggravating failure mode (ii), we introduce the technique Proxy Normalization that normalizes post-activations using a proxy distribution. When combined with layer normalization or group normalization, this batch-independent normalization emulates batch normalizations behavior and consistently matches or exceeds its performance.
A well-known issue of Batch Normalization is its significantly reduced effectiveness in the case of small mini-batch sizes. When a mini-batch contains few examples, the statistics upon which the normalization is defined cannot be reliably estimated f
Batch Normalization (BN)(Ioffe and Szegedy 2015) normalizes the features of an input image via statistics of a batch of images and hence BN will bring the noise to the gradient of the training loss. Previous works indicate that the noise is important
Deep Convolutional Neural Networks (DCNNs) are hard and time-consuming to train. Normalization is one of the effective solutions. Among previous normalization methods, Batch Normalization (BN) performs well at medium and large batch sizes and is with
Batch normalization (BN) is a technique to normalize activations in intermediate layers of deep neural networks. Its tendency to improve accuracy and speed up training have established BN as a favorite technique in deep learning. Yet, despite its eno
A key component of most neural network architectures is the use of normalization layers, such as Batch Normalization. Despite its common use and large utility in optimizing deep architectures, it has been challenging both to generically improve upon