ترغب بنشر مسار تعليمي؟ اضغط هنا

Post-Processed Posteriors for Banded Covariances

61   0   0.0 ( 0 )
 نشر من قبل Kwangmin Lee
 تاريخ النشر 2020
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider Bayesian inference of banded covariance matrices and propose a post-processed posterior. The post-processing of the posterior consists of two steps. In the first step, posterior samples are obtained from the conjugate inverse-Wishart posterior which does not satisfy any structural restrictions. In the second step, the posterior samples are transformed to satisfy the structural restriction through a post-processing function. The conceptually straightforward procedure of the post-processed posterior makes its computation efficient and can render interval estimators of functionals of covariance matrices. We show that it has nearly optimal minimax rates for banded covariances among all possible pairs of priors and post-processing functions. Furthermore, we prove that the expected coverage probability of the $(1-alpha)100%$ highest posterior density region of the post-processed posterior is asymptotically $1-alpha$ with respect to a conventional posterior distribution. It implies that the highest posterior density region of the post-processed posterior is, on average, a credible set of a conventional posterior. The advantages of the post-processed posterior are demonstrated by a simulation study and a real data analysis.



قيم البحث

اقرأ أيضاً

We consider Bayesian inference of sparse covariance matrices and propose a post-processed posterior. This method consists of two steps. In the first step, posterior samples are obtained from the conjugate inverse-Wishart posterior without considering the sparse structural assumption. The posterior samples are transformed in the second step to satisfy the sparse structural assumption through the hard-thresholding function. This non-traditional Bayesian procedure is justified by showing that the post-processed posterior attains the optimal minimax rates. We also investigate the application of the post-processed posterior to the estimation of the global minimum variance portfolio. We show that the post-processed posterior for the global minimum variance portfolio also attains the optimal minimax rate under the sparse covariance assumption. The advantages of the post-processed posterior for the global minimum variance portfolio are demonstrated by a simulation study and a real data analysis with S&P 400 data.
Datasets displaying temporal dependencies abound in science and engineering applications, with Markov models representing a simplified and popular view of the temporal dependence structure. In this paper, we consider Bayesian settings that place prio r distributions over the parameters of the transition kernel of a Markov model, and seeks to characterize the resulting, typically intractable, posterior distributions. We present a PAC-Bayesian analysis of variational Bayes (VB) approximations to tempered Bayesian posterior distributions, bounding the model risk of the VB approximations. Tempered posteriors are known to be robust to model misspecification, and their variational approximations do not suffer the usual problems of over confident approximations. Our results tie the risk bounds to the mixing and ergodic properties of the Markov data generating model. We illustrate the PAC-Bayes bounds through a number of example Markov models, and also consider the situation where the Markov model is misspecified.
129 - Rui Wang , Wangli Xu 2021
This paper is concerned with the problem of comparing the population means of two groups of independent observations. An approximate randomization test procedure based on the test statistic of Chen & Qin (2010) is proposed. The asymptotic behavior of the test statistic as well as the randomized statistic is studied under weak conditions. In our theoretical framework, observations are not assumed to be identically distributed even within groups. No condition on the eigenstructure of the covariance is imposed. And the sample sizes of two groups are allowed to be unbalanced. Under general conditions, all possible asymptotic distributions of the test statistic are obtained. We derive the asymptotic level and local power of the proposed test procedure. Our theoretical results show that the proposed test procedure can adapt to all possible asymptotic distributions of the test statistic and always has correct test level asymptotically. Also, the proposed test procedure has good power behavior. Our numerical experiments show that the proposed test procedure has favorable performance compared with several altervative test procedures.
We consider the asymptotic behaviour of the marginal maximum likelihood empirical Bayes posterior distribution in general setting. First we characterize the set where the maximum marginal likelihood estimator is located with high probability. Then we provide oracle type of upper and lower bounds for the contraction rates of the empirical Bayes posterior. We also show that the hierarchical Bayes posterior achieves the same contraction rate as the maximum marginal likelihood empirical Bayes posterior. We demonstrate the applicability of our general results for various models and prior distributions by deriving upper and lower bounds for the contraction rates of the corresponding empirical and hierarchical Bayes posterior distributions.
We investigate optimal posteriors for recently introduced cite{begin2016pac} chi-squared divergence based PAC-Bayesian bounds in terms of nature of their distribution, scalability of computations, and test set performance. For a finite classifier set , we deduce bounds for three distance functions: KL-divergence, linear and squared distances. Optimal posterior weights are proportional to deviations of empirical risks, usually with subset support. For uniform prior, it is sufficient to search among posteriors on classifier subsets ordered by these risks. We show the bound minimization for linear distance as a convex program and obtain a closed-form expression for its optimal posterior. Whereas that for squared distance is a quasi-convex program under a specific condition, and the one for KL-divergence is non-convex optimization (a difference of convex functions). To compute such optimal posteriors, we derive fast converging fixed point (FP) equations. We apply these approaches to a finite set of SVM regularization parameter values to yield stochastic SVMs with tight bounds. We perform a comprehensive performance comparison between our optimal posteriors and known KL-divergence based posteriors on a variety of UCI datasets with varying ranges and variances in risk values, etc. Chi-squared divergence based posteriors have weaker bounds and worse test errors, hinting at an underlying regularization by KL-divergence based posteriors. Our study highlights the impact of divergence function on the performance of PAC-Bayesian classifiers. We compare our stochastic classifiers with cross-validation based deterministic classifier. The latter has better test errors, but ours is more sample robust, has quantifiable generalization guarantees, and is computationally much faster.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا