ﻻ يوجد ملخص باللغة العربية
We consider Bayesian inference of banded covariance matrices and propose a post-processed posterior. The post-processing of the posterior consists of two steps. In the first step, posterior samples are obtained from the conjugate inverse-Wishart posterior which does not satisfy any structural restrictions. In the second step, the posterior samples are transformed to satisfy the structural restriction through a post-processing function. The conceptually straightforward procedure of the post-processed posterior makes its computation efficient and can render interval estimators of functionals of covariance matrices. We show that it has nearly optimal minimax rates for banded covariances among all possible pairs of priors and post-processing functions. Furthermore, we prove that the expected coverage probability of the $(1-alpha)100%$ highest posterior density region of the post-processed posterior is asymptotically $1-alpha$ with respect to a conventional posterior distribution. It implies that the highest posterior density region of the post-processed posterior is, on average, a credible set of a conventional posterior. The advantages of the post-processed posterior are demonstrated by a simulation study and a real data analysis.
We consider Bayesian inference of sparse covariance matrices and propose a post-processed posterior. This method consists of two steps. In the first step, posterior samples are obtained from the conjugate inverse-Wishart posterior without considering
Datasets displaying temporal dependencies abound in science and engineering applications, with Markov models representing a simplified and popular view of the temporal dependence structure. In this paper, we consider Bayesian settings that place prio
This paper is concerned with the problem of comparing the population means of two groups of independent observations. An approximate randomization test procedure based on the test statistic of Chen & Qin (2010) is proposed. The asymptotic behavior of
We consider the asymptotic behaviour of the marginal maximum likelihood empirical Bayes posterior distribution in general setting. First we characterize the set where the maximum marginal likelihood estimator is located with high probability. Then we
We investigate optimal posteriors for recently introduced cite{begin2016pac} chi-squared divergence based PAC-Bayesian bounds in terms of nature of their distribution, scalability of computations, and test set performance. For a finite classifier set