ﻻ يوجد ملخص باللغة العربية
This paper is concerned with the problem of comparing the population means of two groups of independent observations. An approximate randomization test procedure based on the test statistic of Chen & Qin (2010) is proposed. The asymptotic behavior of the test statistic as well as the randomized statistic is studied under weak conditions. In our theoretical framework, observations are not assumed to be identically distributed even within groups. No condition on the eigenstructure of the covariance is imposed. And the sample sizes of two groups are allowed to be unbalanced. Under general conditions, all possible asymptotic distributions of the test statistic are obtained. We derive the asymptotic level and local power of the proposed test procedure. Our theoretical results show that the proposed test procedure can adapt to all possible asymptotic distributions of the test statistic and always has correct test level asymptotically. Also, the proposed test procedure has good power behavior. Our numerical experiments show that the proposed test procedure has favorable performance compared with several altervative test procedures.
In this paper we provide a provably convergent algorithm for the multivariate Gaussian Maximum Likelihood version of the Behrens--Fisher Problem. Our work builds upon a formulation of the log-likelihood function proposed by Buot and Richards citeBR.
For in vivo research experiments with small sample sizes and available historical data, we propose a sequential Bayesian method for the Behrens-Fisher problem. We consider it as a model choice question with two models in competition: one for which th
Two-sample tests have been one of the most classical topics in statistics with wide application even in cutting edge applications. There are at least two modes of inference used to justify the two-sample tests. One is usual superpopulation inference
In many scientific problems, researchers try to relate a response variable $Y$ to a set of potential explanatory variables $X = (X_1,dots,X_p)$, and start by trying to identify variables that contribute to this relationship. In statistical terms, thi
This paper proposes a new statistic to test independence between two high dimensional random vectors ${mathbf{X}}:p_1times1$ and ${mathbf{Y}}:p_2times1$. The proposed statistic is based on the sum of regularized sample canonical correlation coefficie