ترغب بنشر مسار تعليمي؟ اضغط هنا

An approximate randomization test for high-dimensional two-sample Behrens-Fisher problem under arbitrary covariances

130   0   0.0 ( 0 )
 نشر من قبل Rui Wang
 تاريخ النشر 2021
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper is concerned with the problem of comparing the population means of two groups of independent observations. An approximate randomization test procedure based on the test statistic of Chen & Qin (2010) is proposed. The asymptotic behavior of the test statistic as well as the randomized statistic is studied under weak conditions. In our theoretical framework, observations are not assumed to be identically distributed even within groups. No condition on the eigenstructure of the covariance is imposed. And the sample sizes of two groups are allowed to be unbalanced. Under general conditions, all possible asymptotic distributions of the test statistic are obtained. We derive the asymptotic level and local power of the proposed test procedure. Our theoretical results show that the proposed test procedure can adapt to all possible asymptotic distributions of the test statistic and always has correct test level asymptotically. Also, the proposed test procedure has good power behavior. Our numerical experiments show that the proposed test procedure has favorable performance compared with several altervative test procedures.



قيم البحث

اقرأ أيضاً

In this paper we provide a provably convergent algorithm for the multivariate Gaussian Maximum Likelihood version of the Behrens--Fisher Problem. Our work builds upon a formulation of the log-likelihood function proposed by Buot and Richards citeBR. Instead of focusing on the first order optimality conditions, the algorithm aims directly for the maximization of the log-likelihood function itself to achieve a global solution. Convergence proof and complexity estimates are provided for the algorithm. Computational experiments illustrate the applicability of such methods to high-dimensional data. We also discuss how to extend the proposed methodology to a broader class of problems. We establish a systematic algebraic relation between the Wald, Likelihood Ratio and Lagrangian Multiplier Test ($Wgeq mathit{LR}geq mathit{LM}$) in the context of the Behrens--Fisher Problem. Moreover, we use our algorithm to computationally investigate the finite-sample size and power of the Wald, Likelihood Ratio and Lagrange Multiplier Tests, which previously were only available through asymptotic results. The methods developed here are applicable to much higher dimensional settings than the ones available in the literature. This allows us to better capture the role of high dimensionality on the actual size and power of the tests for finite samples.
For in vivo research experiments with small sample sizes and available historical data, we propose a sequential Bayesian method for the Behrens-Fisher problem. We consider it as a model choice question with two models in competition: one for which th e two expectations are equal and one for which they are different. The choice between the two models is performed through a Bayesian analysis, based on a robust choice of combined objective and subjective priors, set on the parameters space and on the models space. Three steps are necessary to evaluate the posterior probability of each model using two historical datasets similar to the one of interest. Starting from the Jeffreys prior, a posterior using a first historical dataset is deduced and allows to calibrate the Normal-Gamma informative priors for the second historical dataset analysis, in addition to a uniform prior on the model space. From this second step, a new posterior on the parameter space and the models space can be used as the objective informative prior for the last Bayesian analysis. Bayesian and frequentist methods have been compared on simulated and real data. In accordance with FDA recommendations, control of type I and type II error rates has been evaluated. The proposed method controls them even if the historical experiments are not completely similar to the one of interest.
Two-sample tests have been one of the most classical topics in statistics with wide application even in cutting edge applications. There are at least two modes of inference used to justify the two-sample tests. One is usual superpopulation inference assuming the units are independent and identically distributed (i.i.d.) samples from some superpopulation; the other is finite population inference that relies on the random assignments of units into different groups. When randomization is actually implemented, the latter has the advantage of avoiding distributional assumptions on the outcomes. In this paper, we will focus on finite population inference for censored outcomes, which has been less explored in the literature. Moreover, we allow the censoring time to depend on treatment assignment, under which exact permutation inference is unachievable. We find that, surprisingly, the usual logrank test can also be justified by randomization. Specifically, under a Bernoulli randomized experiment with non-informative i.i.d. censoring within each treatment arm, the logrank test is asymptotically valid for testing Fishers null hypothesis of no treatment effect on any unit. Moreover, the asymptotic validity of the logrank test does not require any distributional assumption on the potential event times. We further extend the theory to the stratified logrank test, which is useful for randomized blocked designs and when censoring mechanisms vary across strata. In sum, the developed theory for the logrank test from finite population inference supplements its classical theory from usual superpopulation inference, and helps provide a broader justification for the logrank test.
In many scientific problems, researchers try to relate a response variable $Y$ to a set of potential explanatory variables $X = (X_1,dots,X_p)$, and start by trying to identify variables that contribute to this relationship. In statistical terms, thi s goal can be posed as trying to identify $X_j$s upon which $Y$ is conditionally dependent. Sometimes it is of value to simultaneously test for each $j$, which is more commonly known as variable selection. The conditional randomization test (CRT) and model-X knockoffs are two recently proposed methods that respectively perform conditional independence testing and variable selection by, for each $X_j$, computing any test statistic on the data and assessing that test statistics significance by comparing it to test statistics computed on synthetic variables generated using knowledge of $X$s distribution. Our main contribution is to analyze their power in a high-dimensional linear model where the ratio of the dimension $p$ and the sample size $n$ converge to a positive constant. We give explicit expressions of the asymptotic power of the CRT, variable selection with CRT $p$-values, and model-X knockoffs, each with a test statistic based on either the marginal covariance, the least squares coefficient, or the lasso. One useful application of our analysis is the direct theoretical comparison of the asymptotic powers of variable selection with CRT $p$-values and model-X knockoffs; in the instances with independent covariates that we consider, the CRT provably dominates knockoffs. We also analyze the power gain from using unlabeled data in the CRT when limited knowledge of $X$s distribution is available, and the power of the CRT when samples are collected retrospectively.
This paper proposes a new statistic to test independence between two high dimensional random vectors ${mathbf{X}}:p_1times1$ and ${mathbf{Y}}:p_2times1$. The proposed statistic is based on the sum of regularized sample canonical correlation coefficie nts of ${mathbf{X}}$ and ${mathbf{Y}}$. The asymptotic distribution of the statistic under the null hypothesis is established as a corollary of general central limit theorems (CLT) for the linear statistics of classical and regularized sample canonical correlation coefficients when $p_1$ and $p_2$ are both comparable to the sample size $n$. As applications of the developed independence test, various types of dependent structures, such as factor models, ARCH models and a general uncorrelated but dependent case, etc., are investigated by simulations. As an empirical application, cross-sectional dependence of daily stock returns of companies between different sections in the New York Stock Exchange (NYSE) is detected by the proposed test.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا