ﻻ يوجد ملخص باللغة العربية
We consider the asymptotic behaviour of the marginal maximum likelihood empirical Bayes posterior distribution in general setting. First we characterize the set where the maximum marginal likelihood estimator is located with high probability. Then we provide oracle type of upper and lower bounds for the contraction rates of the empirical Bayes posterior. We also show that the hierarchical Bayes posterior achieves the same contraction rate as the maximum marginal likelihood empirical Bayes posterior. We demonstrate the applicability of our general results for various models and prior distributions by deriving upper and lower bounds for the contraction rates of the corresponding empirical and hierarchical Bayes posterior distributions.
The saddlepoint approximation gives an approximation to the density of a random variable in terms of its moment generating function. When the underlying random variable is itself the sum of $n$ unobserved i.i.d. terms, the basic classical result is t
We present theoretical properties of the log-concave maximum likelihood estimator of a density based on an independent and identically distributed sample in $mathbb{R}^d$. Our study covers both the case where the true underlying density is log-concav
Models with multiple change points are used in many fields; however, the theoretical properties of maximum likelihood estimators of such models have received relatively little attention. The goal of this paper is to establish the asymptotic propertie
This paper explores a class of empirical Bayes methods for level-dependent threshold selection in wavelet shrinkage. The prior considered for each wavelet coefficient is a mixture of an atom of probability at zero and a heavy-tailed density. The mixi
Datasets displaying temporal dependencies abound in science and engineering applications, with Markov models representing a simplified and popular view of the temporal dependence structure. In this paper, we consider Bayesian settings that place prio