ترغب بنشر مسار تعليمي؟ اضغط هنا

Phantom: A smoothed particle hydrodynamics and magnetohydrodynamics code for astrophysics

76   0   0.0 ( 0 )
 نشر من قبل Daniel Price
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present Phantom, a fast, parallel, modular and low-memory smoothed particle hydrodynamics and magnetohydrodynamics code developed over the last decade for astrophysical applications in three dimensions. The code has been developed with a focus on stellar, galactic, planetary and high energy astrophysics and has already been used widely for studies of accretion discs and turbulence, from the birth of planets to how black holes accrete. Here we describe and test the core algorithms as well as modules for magnetohydrodynamics, self-gravity, sink particles, H_2 chemistry, dust-gas mixtures, physical viscosity, external forces including numerous galactic potentials as well as implementations of Lense-Thirring precession, Poynting-Robertson drag and stochastic turbulent driving. Phantom is hereby made publicly available.



قيم البحث

اقرأ أيضاً

Artificial resistivity is included in Smoothed Particle Magnetohydrodynamics simulations to capture shocks and discontinuities in the magnetic field. Here we present a new method for adapting the strength of the applied resistivity so that shocks are captured but the dissipation of the magnetic field away from shocks is minimised. Our scheme utilises the gradient of the magnetic field as a shock indicator, setting {alpha}_B = h|gradB|/|B|, such that resistivity is switched on only where strong discontinuities are present. The advantage to this approach is that the resistivity parameter does not depend on the absolute field strength. The new switch is benchmarked on a series of shock tube tests demonstrating its ability to capture shocks correctly. It is compared against a previous switch proposed by Price & Monaghan (2005), showing that it leads to lower dissipation of the field, and in particular, that it succeeds at capturing shocks in the regime where the Alfven speed is much less than the sound speed (i.e., when the magnetic field is very weak). It is also simpler. We also demonstrate that our recent constrained divergence cleaning algorithm has no difficulty with shock tube tests, in contrast to other implementations.
150 - Daniel J. Price 2015
We describe a simple method for simulating the dynamics of small grains in a dusty gas, relevant to micron-sized grains in the interstellar medium and grains of centimetre size and smaller in protoplanetary discs. The method involves solving one extr a diffusion equation for the dust fraction in addition to the usual equations of hydrodynamics. This diffusion approximation for dust is valid when the dust stopping time is smaller than the computational timestep. We present a numerical implementation using Smoothed Particle Hydrodynamics (SPH) that is conservative, accurate and fast. It does not require any implicit timestepping and can be straightforwardly ported into existing 3D codes.
568 - Terrence S. Tricco 2015
Numerical methods to improve the treatment of magnetic fields in smoothed field magnetohydrodynamics (SPMHD) are developed and tested. Chapter 2 is a review of SPMHD. In Chapter 3, a mixed hyperbolic/parabolic scheme is developed which cleans diverge nce error from the magnetic field. Average divergence error is an order of magnitude lower for all test cases considered, and allows for the stable simulation of the gravitational collapse of magnetised molecular cloud cores. The effectiveness of the cleaning may be improved by explicitly increasing the hyperbolic wave speed or by cycling the cleaning equations between timesteps. In the latter, it is possible to achieve DivB=0. Chapter 4 develops a switch to reduce dissipation of the magnetic field from artificial resistivity. Compared to the existing switch in the literature, this leads to sharper shock profiles in shocktube tests, lower overall dissipation of magnetic energy, and importantly, is able to capture magnetic shocks in the highly super-Alfvenic regime. Chapter 5 compares these numerical methods against grid-based MHD methods (using the Flash code) in simulations of the small-scale dynamo amplification of a magnetic field in driven, isothermal, supersonic turbulence. Both codes exponentially amplify the magnetic energy at a constant rate, though SPMHD shows a resolution dependence that arises from the scaling of the numerical dissipation terms. The time-averaged saturated magnetic spectra have similar shape, and both codes have PDFs of magnetic field strength that are log-normal, which become lopsided as the magnetic field saturates. We conclude that SPMHD is able to reliably simulate the small-scale dynamo amplification of magnetic fields. Chapter 6 concludes the thesis and presents some preliminary work demonstrating that SPMHD can activate the magneto-rotational instability in 2D shearing box tests.
254 - Terrence S. Tricco 2019
There has been interest in recent years to assess the ability of astrophysical hydrodynamics codes to correctly model the Kelvin-Helmholtz instability. Smoothed particle hydrodynamics (SPH), in particular, has received significant attention, though t here has yet to be a clear demonstration that SPH yields converged solutions that are in agreement with other methods. We have performed SPH simulations of the Kelvin-Helmholtz instability using the test problem put forward by Lecoanet et al (2016). We demonstrate that the SPH solutions converge to the reference solution in both the linear and non-linear regimes. Quantitative convergence in the strongly non-linear regime is achieved by using a physical Navier-Stokes viscosity and thermal conductivity. We conclude that standard SPH with an artificial viscosity can correctly capture the Kelvin-Helmholtz instability.
98 - Terrence S. Tricco 2019
We perform simulations of the Kelvin-Helmholtz instability using smoothed particle hydrodynamics (SPH). The instability is studied both in the linear and strongly non-linear regimes. The smooth, well-posed initial conditions of Lecoanet et al. (2016) are used, along with an explicit Navier-Stokes viscosity and thermal conductivity to enforce the evolution in the non-linear regime. We demonstrate convergence to the reference solution using SPH. The evolution of the vortex structures and the degree of mixing, as measured by a passive scalar `colour field, match the reference solution. Tests with an initial density contrast produce the correct qualitative behaviour. The L2 error of the SPH calculations decreases as the resolution is increased. The primary source of error is numerical dissipation arising from artificial viscosity, and tests with reduced artificial viscosity have reduced L2 error. A high-order smoothing kernel is needed in order to resolve the initial velocity amplitude of the seeded mode and inhibit excitation of spurious modes. We find that standard SPH with an artificial viscosity has no difficulty in correctly modelling the Kelvin-Helmholtz instability and yields convergent solutions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا