ترغب بنشر مسار تعليمي؟ اضغط هنا

A robust solution of a statistical inverse problem in multiscale computational mechanics using an artificial neural network

155   0   0.0 ( 0 )
 نشر من قبل Florent Pled
 تاريخ النشر 2020
والبحث باللغة English
 تأليف Florent Pled




اسأل ChatGPT حول البحث

This work addresses the inverse identification of apparent elastic properties of random heterogeneous materials using machine learning based on artificial neural networks. The proposed neural network-based identification method requires the construction of a database from which an artificial neural network can be trained to learn the nonlinear relationship between the hyperparameters of a prior stochastic model of the random compliance field and some relevant quantities of interest of an ad hoc multiscale computational model. An initial database made up with input and target data is first generated from the computational model, from which a processed database is deduced by conditioning the input data with respect to the target data using the nonparametric statistics. Two-and three-layer feedforward artificial neural networks are then trained from each of the initial and processed databases to construct an algebraic representation of the nonlinear mapping between the hyperparameters (network outputs) and the quantities of interest (network inputs). The performances of the trained artificial neural networks are analyzed in terms of mean squared error, linear regression fit and probability distribution between network outputs and targets for both databases. An ad hoc probabilistic model of the input random vector is finally proposed in order to take into account uncertainties on the network input and to perform a robustness analysis of the network output with respect to the input uncertainties level. The capability of the proposed neural network-based identification method to efficiently solve the underlying statistical inverse problem is illustrated through two numerical examples developed within the framework of 2D plane stress linear elasticity, namely a first validation example on synthetic data obtained through computational simulations and a second application example on real experimental data obtained through a physical experiment monitored by digital image correlation on a real heterogeneous biological material (beef cortical bone).



قيم البحث

اقرأ أيضاً

Heuristic tools from statistical physics have been used in the past to locate the phase transitions and compute the optimal learning and generalization errors in the teacher-student scenario in multi-layer neural networks. In this contribution, we pr ovide a rigorous justification of these approaches for a two-layers neural network model called the committee machine. We also introduce a version of the approximate message passing (AMP) algorithm for the committee machine that allows to perform optimal learning in polynomial time for a large set of parameters. We find that there are regimes in which a low generalization error is information-theoretically achievable while the AMP algorithm fails to deliver it, strongly suggesting that no efficient algorithm exists for those cases, and unveiling a large computational gap.
135 - Tianyu Liu , Lingyu Zhang 2021
The manpower scheduling problem is a kind of critical combinational optimization problem. Researching solutions to scheduling problems can improve the efficiency of companies, hospitals, and other work units. This paper proposes a new model combined with deep learning to solve the multi-shift manpower scheduling problem based on the existing research. This model first solves the objective functions optimized value according to the current constraints to find the plan of employee arrangement initially. It will then use the scheduling table generation algorithm to obtain the scheduling result in a short time. Moreover, the most prominent feature we propose is that we will use the neural network training method based on the time series to solve long-term and long-period scheduling tasks and obtain manpower arrangement. The selection criteria of the neural network and the training process are also described in this paper. We demonstrate that our model can make a precise forecast based on the improvement of neural networks. This paper also discusses the challenges in the neural network training process and obtains enlightening results after getting the arrangement plan. Our research shows that neural networks and deep learning strategies have the potential to solve similar problems effectively.
The time evolution of dynamical systems is frequently described by ordinary differential equations (ODEs), which must be solved for given initial conditions. Most standard approaches numerically integrate ODEs producing a single solution whose values are computed at discrete times. When many varied solutions with different initial conditions to the ODE are required, the computational cost can become significant. We propose that a neural network be used as a solution bundle, a collection of solutions to an ODE for various initial states and system parameters. The neural network solution bundle is trained with an unsupervised loss that does not require any prior knowledge of the sought solutions, and the resulting object is differentiable in initial conditions and system parameters. The solution bundle exhibits fast, parallelizable evaluation of the system state, facilitating the use of Bayesian inference for parameter estimation in real dynamical systems.
Fetal alcohol spectrum disorder (FASD) is a syndrome whose only difference compared to other childrens conditions is the mothers alcohol consumption during pregnancy. An earlier diagnosis of FASD improving the quality of life of children and adolesce nts. For this reason, this study focus on evaluating the use of the artificial neural network (ANN) to classify children with FASD and explore how accurate it is. ANN has been used to diagnose cancer, diabetes, and other diseases in the medical area, being a tool that presents good results. The data used is from a battery of tests from children for 5-18 years old (include tests of psychometric, saccade eye movement, and diffusion tensor imaging (DTI)). We study the different configurations of ANN with dense layers. The first one predicts 75% of the outcome correctly for psychometric data. The others models include a feature layer, and we used it to predict FASD using every test individually. The models accurately predict over 70% of the cases, and psychometric and memory guides predict over 88% accuracy. The results suggest that the ANN approach is a competitive and efficient methodology to detect FASD. However, we could be careful in used as a diagnostic technique.
140 - Nachiket H. Gokhale 2021
We explore the application of a Convolutional Neural Network (CNN) to image the shear modulus field of an almost incompressible, isotropic, linear elastic medium in plane strain using displacement or strain field data. This problem is important in me dicine because the shear modulus of suspicious and potentially cancerous growths in soft tissue is elevated by about an order of magnitude as compared to the background of normal tissue. Imaging the shear modulus field therefore can lead to high-contrast medical images. Our imaging problem is: Given a displacement or strain field (or its components), predict the corresponding shear modulus field. Our CNN is trained using 6000 training examples consisting of a displacement or strain field and a corresponding shear modulus field. We observe encouraging results which warrant further research and show the promise of this methodology.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا