ﻻ يوجد ملخص باللغة العربية
Fetal alcohol spectrum disorder (FASD) is a syndrome whose only difference compared to other childrens conditions is the mothers alcohol consumption during pregnancy. An earlier diagnosis of FASD improving the quality of life of children and adolescents. For this reason, this study focus on evaluating the use of the artificial neural network (ANN) to classify children with FASD and explore how accurate it is. ANN has been used to diagnose cancer, diabetes, and other diseases in the medical area, being a tool that presents good results. The data used is from a battery of tests from children for 5-18 years old (include tests of psychometric, saccade eye movement, and diffusion tensor imaging (DTI)). We study the different configurations of ANN with dense layers. The first one predicts 75% of the outcome correctly for psychometric data. The others models include a feature layer, and we used it to predict FASD using every test individually. The models accurately predict over 70% of the cases, and psychometric and memory guides predict over 88% accuracy. The results suggest that the ANN approach is a competitive and efficient methodology to detect FASD. However, we could be careful in used as a diagnostic technique.
As one of the most important paradigms of recurrent neural networks, the echo state network (ESN) has been applied to a wide range of fields, from robotics to medicine, finance, and language processing. A key feature of the ESN paradigm is its reserv
In this work, a dense recurrent convolutional neural network (DRCNN) was constructed to detect sleep disorders including arousal, apnea and hypopnea using Polysomnography (PSG) measurement channels provided in the 2018 Physionet challenge database. O
In this paper we investigate the usage of machine learning for interpreting measured sensor values in sensor modules. In particular we analyze the potential of artificial neural networks (ANNs) on low-cost micro-controllers with a few kilobytes of me
Stochastic Gradient Descent (SGD) has proven to be remarkably effective in optimizing deep neural networks that employ ever-larger numbers of parameters. Yet, improving the efficiency of large-scale optimization remains a vital and highly active area
In this paper, we propose a neuro-symbolic framework called weighted Signal Temporal Logic Neural Network (wSTL-NN) that combines the characteristics of neural networks and temporal logics. Weighted Signal Temporal Logic (wSTL) formulas are recursive