ترغب بنشر مسار تعليمي؟ اضغط هنا

The committee machine: Computational to statistical gaps in learning a two-layers neural network

76   0   0.0 ( 0 )
 نشر من قبل Benjamin Aubin
 تاريخ النشر 2018
والبحث باللغة English




اسأل ChatGPT حول البحث

Heuristic tools from statistical physics have been used in the past to locate the phase transitions and compute the optimal learning and generalization errors in the teacher-student scenario in multi-layer neural networks. In this contribution, we provide a rigorous justification of these approaches for a two-layers neural network model called the committee machine. We also introduce a version of the approximate message passing (AMP) algorithm for the committee machine that allows to perform optimal learning in polynomial time for a large set of parameters. We find that there are regimes in which a low generalization error is information-theoretically achievable while the AMP algorithm fails to deliver it, strongly suggesting that no efficient algorithm exists for those cases, and unveiling a large computational gap.



قيم البحث

اقرأ أيضاً

The excited state dynamics of chromophores in complex environments determine a range of vital biological and energy capture processes. Time-resolved, multidimensional optical spectroscopies provide a key tool to investigate these processes. Although theory has the potential to decode these spectra in terms of the electronic and atomistic dynamics, the need for large numbers of excited state electronic structure calculations severely limits first principles predictions of multidimensional optical spectra for chromophores in the condensed phase. Here, we leverage the locality of chromophore excitations to develop machine learning models to predict the excited state energy gap of chromophores in complex environments for efficiently constructing linear and multidimensional optical spectra. By analyzing the performance of these models, which span a hierarchy of physical approximations, across a range of chromophore-environment interaction strengths, we provide strategies for the construction of ML models that greatly accelerate the calculation of multidimensional optical spectra from first principles.
247 - Marc Durand 2015
In a recent series of papers [1--3], a statistical model that accounts for correlations between topological and geometrical properties of a two-dimensional shuffled foam has been proposed and compared with experimental and numerical data. Here, the v arious assumptions on which the model is based are exposed and justified: the equiprobability hypothesis of the foam configurations is argued. The range of correlations between bubbles is discussed, and the mean field approximation that is used in the model is detailed. The two self-consistency equations associated with this mean field description can be interpreted as the conservation laws of number of sides and bubble curvature, respectively. Finally, the use of a Grand-Canonical description, in which the foam constitutes a reservoir of sides and curvature, is justified.
The task of classifying the entanglement properties of a multipartite quantum state poses a remarkable challenge due to the exponentially increasing number of ways in which quantum systems can share quantum correlations. Tackling such challenge requi res a combination of sophisticated theoretical and computational techniques. In this paper we combine machine-learning tools and the theory of quantum entanglement to perform entanglement classification for multipartite qubit systems in pure states. We use a parameterisation of quantum systems using artificial neural networks in a restricted Boltzmann machine (RBM) architecture, known as Neural Network Quantum States (NNS), whose entanglement properties can be deduced via a constrained, reinforcement learning procedure. In this way, Separable Neural Network States (SNNS) can be used to build entanglement witnesses for any target state.
We employ variational autoencoders to extract physical insight from a dataset of one-particle Anderson impurity model spectral functions. Autoencoders are trained to find a low-dimensional, latent space representation that faithfully characterizes ea ch element of the training set, as measured by a reconstruction error. Variational autoencoders, a probabilistic generalization of standard autoencoders, further condition the learned latent space to promote highly interpretable features. In our study, we find that the learned latent space components strongly correlate with well known, but nontrivial, parameters that characterize emergent behaviors in the Anderson impurity model. In particular, one latent space component correlates with particle-hole asymmetry, while another is in near one-to-one correspondence with the Kondo temperature, a dynamically generated low-energy scale in the impurity model. With symbolic regression, we model this component as a function of bare physical input parameters and rediscover the non-perturbative formula for the Kondo temperature. The machine learning pipeline we develop opens opportunities to discover new domain knowledge in other physical systems.
Apparent critical phenomena, typically indicated by growing correlation lengths and dynamical slowing-down, are ubiquitous in non-equilibrium systems such as supercooled liquids, amorphous solids, active matter and spin glasses. It is often challengi ng to determine if such observations are related to a true second-order phase transition as in the equilibrium case, or simply a crossover, and even more so to measure the associated critical exponents. Here, we show that the simulation results of a hard-sphere glass in three dimensions, are consistent with the recent theoretical prediction of a Gardner transition, a continuous non-equilibrium phase transition. Using a hybrid molecular simulation-machine learning approach, we obtain scaling laws for both finite-size and aging effects, and determine the critical exponents that traditional methods fail to estimate. Our study provides a novel approach that is useful to understand the nature of glass transitions, and can be generalized to analyze other non-equilibrium phase transitions.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا