ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-scale simulation of thrombus formation at LVAD inlet cannula connection: Importance of Virchows triad

68   0   0.0 ( 0 )
 نشر من قبل Rodrigo Mendez Rojano
 تاريخ النشر 2020
  مجال البحث علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

As pump thrombosis is reduced in current-generation ventricular assist devices (VAD), adverse events such as bleeding or stroke remain at unacceptable rates. Thrombosis around the VAD inlet cannula (IC) has been highlighted as a possible source of stroke events. Recent computational fluid dynamics (CFD) studies have attempted to characterize the thrombosis risk of different IC-ventricle configurations. However, purely CFD simulations relate thrombosis risk to ad-hoc criteria based on flow characteristics, with little consideration of biochemical factors. This study investigates the genesis of IC thrombosis including two elements of the Virchows triad: Endothelial injury and Hypercoagulability. To this end a multi-scale thrombosis simulation that includes platelet activity and coagulation reactions was performed. Our results show significant thrombin formation in stagnation regions (|u|< 0.002 m/s) close to the IC wall. In addition, high shear-mediated platelet activation was observed over the leading-edge tip of the cannula which mirrors the thrombus deposition pattern observed clinically. The current study reveals the importance of biochemical factors to the genesis of thrombosis at the ventricular-cannula junction which can inform clinical decisions in terms of anticoagulation/antiplatelet therapy and guide engineers to develop more robust designs.



قيم البحث

اقرأ أيضاً

Thromboembolic complications remain a central issue in management of patients on mechanical circulatory support. Despite the best practices employed in design and manufacturing of modern ventricular assist devices, complexity and modular nature of th ese systems often introduces internal steps and crevices in the flow path which can serve as nidus for thrombus formation. Thrombotic potential is influenced by multiple factors including the characteristics of the flow and surface chemistry of the biomaterial. This study explored these elements in the setting of blood flow over a micro-crevice using a multi-constituent numerical model of thrombosis. The simulations reproduced the platelet deposition patterns observed experimentally and elucidated the role of flow, shear rate, and surface chemistry in shaping the deposition. The results offer insights for design and operation of blood-contacting devices.
In this paper, we present a spatio-temporal mathematical model for simulating the formation and growth of a thrombus. Blood is treated as a multi-constituent mixture comprised of a linear fluid phase and a thrombus (solid) phase. The transport and re actions of 10 chemical and biological species are incorporated using a system of coupled convection-reaction-diffusion (CRD) equations to represent three processes in thrombus formation: initiation, propagation and stabilization. Computational fluid dynamic (CFD) simulations using the libraries of OpenFOAM were performed for two illustrative benchmark problems: in vivo thrombus growth in an injured blood vessel and in vitro thrombus deposition in micro-channels (1.5mm x 1.6mm x 0.1mm) with small crevices (125{mu}m x 75{mu}m and 125{mu}m x 137{mu}m). For both problems, the simulated thrombus deposition agreed very well with experimental observations, both spatially and temporally. Based on the success with these two benchmark problems, which have very different flow conditions and biological environments, we believe that the current model will provide useful insight into the genesis of thrombosis in blood-wetted devices, and provide a tool for the design of less thrombogenic devices.
We present a model of articular cartilage lesion formation to simulate the effects of cyclic loading. This model extends and modifies the reaction-diffusion-delay model by Graham et al. 2012 for the spread of a lesion formed though a single traumatic event. Our model represents implicitly the effects of loading, meaning through a cyclic sink term in the equations for live cells. Our model forms the basis for in silico studies of cartilage damage relevant to questions in osteoarthritis, for example, that may not be easily answered through in vivo or in vitro studies. Computational results are presented that indicate the impact of differing levels of EPO on articular cartilage lesion abatement.
409 - Nikolai Bessonov 2013
The objective of this chapter is to give an insight of the mathematical modellng of hematopoiesis using multi-agent systems. Several questions may arise then: what is hematopoiesis and why is it interesting to study this problem from a mathematical p oint of view? Has the multi-agent system approach been the only attempt done until now? What does it bring more than other techniques? What were the results obtained? What is there left to do?
220 - A.O. Sousa 2004
Several cases of the Sznajd model of socio-physics, that only a group of people sharing the same opinion can convince their neighbors, have been simulated on a more realistic network with a stronger clustering. In addition, many opinions, instead of usually only two, and a convincing probability have been also considered. Finally, with minor changes we obtain a vote distribution in good agreement with reality.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا