ﻻ يوجد ملخص باللغة العربية
In this paper, we present a spatio-temporal mathematical model for simulating the formation and growth of a thrombus. Blood is treated as a multi-constituent mixture comprised of a linear fluid phase and a thrombus (solid) phase. The transport and reactions of 10 chemical and biological species are incorporated using a system of coupled convection-reaction-diffusion (CRD) equations to represent three processes in thrombus formation: initiation, propagation and stabilization. Computational fluid dynamic (CFD) simulations using the libraries of OpenFOAM were performed for two illustrative benchmark problems: in vivo thrombus growth in an injured blood vessel and in vitro thrombus deposition in micro-channels (1.5mm x 1.6mm x 0.1mm) with small crevices (125{mu}m x 75{mu}m and 125{mu}m x 137{mu}m). For both problems, the simulated thrombus deposition agreed very well with experimental observations, both spatially and temporally. Based on the success with these two benchmark problems, which have very different flow conditions and biological environments, we believe that the current model will provide useful insight into the genesis of thrombosis in blood-wetted devices, and provide a tool for the design of less thrombogenic devices.
Osteocytes and their cell processes reside in a large, interconnected network of voids pervading the mineralized bone matrix of most vertebrates. This osteocyte lacuno-canalicular network (OLCN) is believed to play important roles in mechanosensing,
Bubbles introduced to the arterial circulation during invasive medical procedures can have devastating consequences for brain function but their effects are currently difficult to quantify. Here we present a Monte-Carlo simulation investigating the i
Radiotherapy can effectively kill malignant cells, but the doses required to cure cancer patients may inflict severe collateral damage to adjacent healthy tissues. Hyperthermia (HT) is a promising option to improve the outcome of radiation treatment
Severe Acute Respiratory Syndrome-CoronaVirus 2 (SARS-CoV2) caused the ongoing pandemic. This pandemic devastated the world by killing more than a million people, as of October 2020. It is imperative to understand the transmission dynamics of SARS-Co
Non-extensive statistical physics has allowed to generalize mathematical functions such as exponential and logarithms. The same framework is used to generalize sum and product so that the operations allow a more fluid way to work with mathematical ex