ﻻ يوجد ملخص باللغة العربية
The objective of this chapter is to give an insight of the mathematical modellng of hematopoiesis using multi-agent systems. Several questions may arise then: what is hematopoiesis and why is it interesting to study this problem from a mathematical point of view? Has the multi-agent system approach been the only attempt done until now? What does it bring more than other techniques? What were the results obtained? What is there left to do?
We study a system of particles in a two-dimensional geometry that move according to a reinforced random walk with transition probabilities dependent on the solutions of reaction-diffusion equations for the underlying fields. A birth process and a his
The impulse response function (IRF) of a localized bolus in cerebral blood flow codes important information on the tissue type. It is indirectly accessible both from MR- and CT-imaging methods, at least in principle. In practice, however, noise and l
We study a five-compartment mathematical model originally proposed by Kuznetsov et al. (1994) to investigate the effect of nonlinear interactions between tumour and immune cells in the tumour microenvironment, whereby immune cells may induce tumour c
Rapidly dividing tissues, like intestinal crypts, are frequently chosen to investigate the process of tumor initiation, because of their high rate of mutations. To study the interplay between normal and mutant as well as immortal cells in the human c
One major challenge in implementation of formation control problems stems from the packet loss that occur in these shared communication channel. In the presence of packet loss the coordination information among agents is lost. Moreover, there is a mo