ﻻ يوجد ملخص باللغة العربية
We explore machine learning methods to detect gravitational waves (GW) from binary black hole (BBH) mergers using deep learning (DL) algorithms. The DL networks are trained with gravitational waveforms obtained from BBH mergers with component masses randomly sampled in the range from 5 to 100 solar masses and luminosity distances from 100 Mpc to, at least, 2000 Mpc. The GW signal waveforms are injected in public data from the O2 run of the Advanced LIGO and Advanced Virgo detectors, in time windows that do not coincide with those of known detected signals. We demonstrate that DL algorithms, trained with GW signal waveforms at distances of 2000 Mpc, still show high accuracy when detecting closer signals, within the ranges considered in our analysis. Moreover, by combining the results of the three-detector network in a unique RGB image, the single detector performance is improved by as much as 70%. Furthermore, we train a regression network to perform parameter inference on BBH spectrogram data and apply this network to the events from the the GWTC-1 and GWTC-2 catalogs. Without significant optimization of our algorithms we obtain results that are mostly consistent with published results by the LIGO-Virgo Collaboration. In particular, our predictions for the chirp mass are compatible (up to 3$sigma$) with the official values for 90% of events
Inferring the source properties of a gravitational wave signal has traditionally been very computationally intensive and time consuming. In recent years, several techniques have been developed that can significantly reduce the computational cost whil
We construct a Bayesian inference deep learning machine for parameter estimation of gravitational wave events of binaries of black hole coalescence. The structure of our deep Bayseian machine adopts the conditional variational autoencoder scheme by c
Folding uncertainty in theoretical models into Bayesian parameter estimation is necessary in order to make reliable inferences. A general means of achieving this is by marginalizing over model uncertainty using a prior distribution constructed using
We review detection methods that are currently in use or have been proposed to search for a stochastic background of gravitational radiation. We consider both Bayesian and frequentist searches using ground-based and space-based laser interferometers,
We seek to achieve the Holy Grail of Bayesian inference for gravitational-wave astronomy: using deep-learning techniques to instantly produce the posterior $p(theta|D)$ for the source parameters $theta$, given the detector data $D$. To do so, we trai