ﻻ يوجد ملخص باللغة العربية
We seek to achieve the Holy Grail of Bayesian inference for gravitational-wave astronomy: using deep-learning techniques to instantly produce the posterior $p(theta|D)$ for the source parameters $theta$, given the detector data $D$. To do so, we train a deep neural network to take as input a signal + noise data set (drawn from the astrophysical source-parameter prior and the sampling distribution of detector noise), and to output a parametrized approximation of the corresponding posterior. We rely on a compact representation of the data based on reduced-order modeling, which we generate efficiently using a separate neural-network waveform interpolant [A. J. K. Chua, C. R. Galley & M. Vallisneri, Phys. Rev. Lett. 122, 211101 (2019)]. Our scheme has broad relevance to gravitational-wave applications such as low-latency parameter estimation and characterizing the science returns of future experiments. Source code and trained networks are available online at https://github.com/vallis/truebayes.
A central challenge in Gravitational Wave Astronomy is identifying weak signals in the presence of non-stationary and non-Gaussian noise. The separation of gravitational wave signals from noise requires good models for both. When accurate signal mode
Gravitational wave data from ground-based detectors is dominated by instrument noise. Signals will be comparatively weak, and our understanding of the noise will influence detection confidence and signal characterization. Mis-modeled noise can produc
The field of transient astronomy has seen a revolution with the first gravitational-wave detections and the arrival of multi-messenger observations they enabled. Transformed by the first detection of binary black hole and binary neutron star mergers,
In the past few years, approximate Bayesian Neural Networks (BNNs) have demonstrated the ability to produce statistically consistent posteriors on a wide range of inference problems at unprecedented speed and scale. However, any disconnect between tr
Primordial black holes (PBHs) might be formed in the early Universe and could comprise at least a fraction of the dark matter. Using the recently released GWTC-2 dataset from the third observing run of the LIGO-Virgo Collaboration, we investigate whe