ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning Bayesian posteriors with neural networks for gravitational-wave inference

108   0   0.0 ( 0 )
 نشر من قبل Alvin Chua
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We seek to achieve the Holy Grail of Bayesian inference for gravitational-wave astronomy: using deep-learning techniques to instantly produce the posterior $p(theta|D)$ for the source parameters $theta$, given the detector data $D$. To do so, we train a deep neural network to take as input a signal + noise data set (drawn from the astrophysical source-parameter prior and the sampling distribution of detector noise), and to output a parametrized approximation of the corresponding posterior. We rely on a compact representation of the data based on reduced-order modeling, which we generate efficiently using a separate neural-network waveform interpolant [A. J. K. Chua, C. R. Galley & M. Vallisneri, Phys. Rev. Lett. 122, 211101 (2019)]. Our scheme has broad relevance to gravitational-wave applications such as low-latency parameter estimation and characterizing the science returns of future experiments. Source code and trained networks are available online at https://github.com/vallis/truebayes.



قيم البحث

اقرأ أيضاً

A central challenge in Gravitational Wave Astronomy is identifying weak signals in the presence of non-stationary and non-Gaussian noise. The separation of gravitational wave signals from noise requires good models for both. When accurate signal mode ls are available, such as for binary Neutron star systems, it is possible to make robust detection statements even when the noise is poorly understood. In contrast, searches for un-modeled transient signals are strongly impacted by the methods used to characterize the noise. Here we take a Bayesian approach and introduce a multi-component, variable dimension, parameterized noise model that explicitly accounts for non-stationarity and non-Gaussianity in data from interferometric gravitational wave detectors. Instrumental transients (glitches) and burst sources of gravitational waves are modeled using a Morlet-Gabor continuous wavelet frame. The number and placement of the wavelets is determined by a trans-dimensional Reversible Jump Markov Chain Monte Carlo algorithm. The Gaussian component of the noise and sharp line features in the noise spectrum are modeled using the BayesLine algorithm, which operates in concert with the wavelet model.
Gravitational wave data from ground-based detectors is dominated by instrument noise. Signals will be comparatively weak, and our understanding of the noise will influence detection confidence and signal characterization. Mis-modeled noise can produc e large systematic biases in both model selection and parameter estimation. Here we introduce a multi-component, variable dimension, parameterized model to describe the Gaussian-noise power spectrum for data from ground-based gravitational wave interferometers. Called BayesLine, the algorithm models the noise power spectral density using cubic splines for smoothly varying broad-band noise and Lorentzians for narrow-band line features in the spectrum. We describe the algorithm and demonstrate its performance on data from the fifth and sixth LIGO science runs. Once fully integrated into LIGO/Virgo data analysis software, BayesLine will produce accurate spectral estimation and provide a means for marginalizing inferences drawn from the data over all plausible noise spectra.
The field of transient astronomy has seen a revolution with the first gravitational-wave detections and the arrival of multi-messenger observations they enabled. Transformed by the first detection of binary black hole and binary neutron star mergers, computational demands in gravitational-wave astronomy are expected to grow by at least a factor of two over the next five years as the global network of kilometer-scale interferometers are brought to design sensitivity. With the increase in detector sensitivity, real-time delivery of gravitational-wave alerts will become increasingly important as an enabler of multi-messenger followup. In this work, we report a novel implementation and deployment of deep learning inference for real-time gravitational-wave data denoising and astrophysical source identification. This is accomplished using a generic Inference-as-a-Service model that is capable of adapting to the future needs of gravitational-wave data analysis. Our implementation allows seamless incorporation of hardware accelerators and also enables the use of commercial or private (dedicated) as-a-service computing. Based on our results, we propose a paradigm shift in low-latency and offline computing in gravitational-wave astronomy. Such a shift can address key challenges in peak-usage, scalability and reliability, and provide a data analysis platform particularly optimized for deep learning applications. The achieved sub-millisecond scale latency will also be relevant for any machine learning-based real-time control systems that may be invoked in the operation of near-future and next generation ground-based laser interferometers, as well as the front-end collection, distribution and processing of data from such instruments.
In the past few years, approximate Bayesian Neural Networks (BNNs) have demonstrated the ability to produce statistically consistent posteriors on a wide range of inference problems at unprecedented speed and scale. However, any disconnect between tr aining sets and the distribution of real-world objects can introduce bias when BNNs are applied to data. This is a common challenge in astrophysics and cosmology, where the unknown distribution of objects in our Universe is often the science goal. In this work, we incorporate BNNs with flexible posterior parameterizations into a hierarchical inference framework that allows for the reconstruction of population hyperparameters and removes the bias introduced by the training distribution. We focus on the challenge of producing posterior PDFs for strong gravitational lens mass model parameters given Hubble Space Telescope (HST) quality single-filter, lens-subtracted, synthetic imaging data. We show that the posterior PDFs are sufficiently accurate (i.e., statistically consistent with the truth) across a wide variety of power-law elliptical lens mass distributions. We then apply our approach to test data sets whose lens parameters are drawn from distributions that are drastically different from the training set. We show that our hierarchical inference framework mitigates the bias introduced by an unrepresentative training sets interim prior. Simultaneously, given a sufficiently broad training set, we can precisely reconstruct the population hyperparameters governing our test distributions. Our full pipeline, from training to hierarchical inference on thousands of lenses, can be run in a day. The framework presented here will allow us to efficiently exploit the full constraining power of future ground- and space-based surveys.
Primordial black holes (PBHs) might be formed in the early Universe and could comprise at least a fraction of the dark matter. Using the recently released GWTC-2 dataset from the third observing run of the LIGO-Virgo Collaboration, we investigate whe ther current observations are compatible with the hypothesis that all black hole mergers detected so far are of primordial origin. We constrain PBH formation models within a hierarchical Bayesian inference framework based on deep learning techniques, finding best-fit values for distinctive features of these models, including the PBH initial mass function, the fraction of PBHs in dark matter, and the accretion efficiency. The presence of several spinning binaries in the GWTC-2 dataset favors a scenario in which PBHs accrete and spin up. Our results indicate that PBHs may comprise only a fraction smaller than $0.3 %$ of the total dark matter, and that the predicted PBH abundance is still compatible with other constraints.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا