ﻻ يوجد ملخص باللغة العربية
Folding uncertainty in theoretical models into Bayesian parameter estimation is necessary in order to make reliable inferences. A general means of achieving this is by marginalizing over model uncertainty using a prior distribution constructed using Gaussian process regression (GPR). As an example, we apply this technique to the measurement of chirp mass using (simulated) gravitational-wave signals from binary black holes that could be observed using advanced-era gravitational-wave detectors. Unless properly accounted for, uncertainty in the gravitational-wave templates could be the dominant source of error in studies of these systems. We explain our approach in detail and provide proofs of various features of the method, including the limiting behavior for high signal-to-noise, where systematic model uncertainties dominate over noise errors. We find that the marginalized likelihood constructed via GPR offers a significant improvement in parameter estimation over the standard, uncorrected likelihood both in our simple one-dimensional study, and theoretically in general. We also examine the dependence of the method on the size of training set used in the GPR; on the form of covariance function adopted for the GPR, and on changes to the detector noise power spectral density.
One of the main bottlenecks in gravitational wave (GW) astronomy is the high cost of performing parameter estimation and GW searches on the fly. We propose a novel technique based on Reduced Order Quadratures (ROQs), an application and data-specific
We construct a Bayesian inference deep learning machine for parameter estimation of gravitational wave events of binaries of black hole coalescence. The structure of our deep Bayseian machine adopts the conditional variational autoencoder scheme by c
By listening to gravity in the low frequency band, between 0.1 mHz and 1 Hz, the future space-based gravitational-wave observatory LISA will be able to detect tens of thousands of astrophysical sources from cosmic dawn to the present. The detection a
Inspiraling binaries of compact objects are primary targets for current and future gravitational-wave observatories. Waveforms computed in General Relativity are used to search for these sources, and will probably be used to extract source parameters
Optical scatterometry is a method to measure the size and shape of periodic micro- or nanostructures on surfaces. For this purpose the geometry parameters of the structures are obtained by reproducing experimental measurement results through numerica