ترغب بنشر مسار تعليمي؟ اضغط هنا

The signature of granulation in a solar power spectrum as seen with CO$^5$BOLD

80   0   0.0 ( 0 )
 نشر من قبل Mia Sloth Lundkvist
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Mia S. Lundkvist




اسأل ChatGPT حول البحث

The granulation background seen in the power spectrum of a solar-like oscillator poses a serious challenge for extracting precise and detailed information about the stellar oscillations. Using a 3D hydrodynamical simulation of the Sun computed with CO$^5$BOLD, we investigate various background models to infer, using a Bayesian methodology, which one provides the best fit to the background in the simulated power spectrum. We find that the best fit is provided by an expression including the overall power level and two characteristic frequencies, one with an exponent of 2 and one with a free exponent taking on a value around 6. We assess the impact of the 3D hydro-code on this result by repeating the analysis with a simulation from Stagger and find that the main conclusion is unchanged. However, the details of the resulting best fits differ slightly between the two codes, but we explain this difference by studying the effect of the spatial resolution and the duration of the simulation on the fit. Additionally, we look into the impact of adding white noise to the simulated time series as a simple way to mimic a real star. We find that, as long as the noise level is not too low, the results are consistent with the no-noise case.



قيم البحث

اقرأ أيضاً

The solar granulation is known for a long time to be a surface manifestation of convection. Thanks to the current space-borne missions CoRoT and Kepler, it is now possible to observe in disk-integrated intensity the signature of this phenomena in a g rowing number of stars. The space-based photometric measurements show that the global brightness fluctuations and the lifetime associated with granulation obeys characteristic scaling relations. We thus aim at providing a simple theoretical modeling to reproduce these scaling relations and subsequently at inferring the physical properties of granulation properties across the HR diagram. We develop a simple 1D theoretical model that enable us to test any prescription concerning the time-correlation between granules. The input parameters of the model are extracted from 3D hydrodynamical models of the surface layers of stars, and the free parameters involved in the model are calibrated with solar observations. Two different prescriptions for representing the eddy time-correlation in the Fourier space are compared: a Lorentzian and an exponential form. Finally, we compare our theoretical prediction with a 3D radiative hydrodynamical (RHD) numerical modeling of stellar granulation (ab-initio approach). Provided that the free parameters are appropriately adjusted, our theoretical model satisfactorily reproduces the shape and the amplitude of the observed solar granulation spectrum. The best agreement is obtained with an exponential form. Furthermore, our theoretical model results in granulation spectra that consistently agree with the these calculated on the basis of the ab-initio approach with two 3D RHD models. Comparison between theoretical granulation spectra calculated with the present model and high precision photometry measurements of stellar granulation is undertaken in a companion paper.
A large set of stars observed by CoRoT and Kepler shows clear evidence for the presence of a stellar background, which is interpreted to arise from surface convection, i.e., granulation. These observations show that the characteristic time-scale (tau _eff) and the root-mean-square (rms) brightness fluctuations (sigma) associated with the granulation scale as a function of the peak frequency (nu_max) of the solar-like oscillations. We aim at providing a theoretical background to the observed scaling relations based on a model developed in the companion paper. We computed for each 3D model the theoretical power density spectrum (PDS) associated with the granulation as seen in disk-integrated intensity on the basis of the theoretical model. For each PDS we derived tau_eff and sigma and compared these theoretical values with the theoretical scaling relations derived from the theoretical model and the Kepler measurements. We derive theoretical scaling relations for tau_eff and sigma, which show the same dependence on nu_max as the observed scaling relations. In addition, we show that these quantities also scale as a function of the turbulent Mach number (Ma) estimated at the photosphere. The theoretical scaling relations for tau_eff and sigma match the observations well on a global scale. Our modelling provides additional theoretical support for the observed variations of sigma and tau_eff with nu_m max. It also highlights the important role of Ma in controlling the properties of the stellar granulation. However, the observations made with Kepler on a wide variety of stars cannot confirm the dependence of our scaling relations on Ma. Measurements of the granulation background and detections of solar-like oscillations in a statistically sufficient number of cool dwarf stars will be required for confirming the dependence of the theoretical scaling relations with Ma.
The CoRoT and Kepler missions provided a wealth of high-quality data for solar-like oscillations. To make the best of such data for seismic inferences, we need theoretical models with precise near-surface structure, which has significant influence on solar-like oscillation frequencies. The mixing-length parameter, $alpha$, is a key factor for the near-surface structure. In the convection formulations used in evolution codes, the $alpha$ is a free parameter that needs to be properly specified. We calibrated $alpha$ values by matching entropy profiles of 1D envelope models with those of 3D CO$^5$BOLD models. For such calibration, previous works concentrated on the classical mixing-length theory (MLT). Here we also analyzed the full spectrum turbulence (FST) models. For the atmosphere part in the 1D models, we use the Eddington grey $T(tau)$ relation and the one with the solar-calibrated Hopf-like function. For both the MLT and FST models with a mixing length $l=alpha H_p$, calibrated $alpha$ values increase with increasing $g$ or decreasing $T_{rm eff}$. For the FST models, we also calibrated values of $alpha^*$ defined as $l=r_{rm top}-r+alpha^*H_{p,{rm top}}$. $alpha^*$ is found to increase with $T_{rm eff}$ and $g$. As for the correspondence to the 3D models, the solar Hopf-like function gives a photospheric-minimum entropy closer to a 3D model than the Eddington $T(tau)$. The structure below the photosphere depends on the convection model. However, not a single convection model gives the best correspondence since the averaged 3D quantities are not necessarily related via an EOS. Although the FST models with $l=r_{rm top}-r+alpha^*H_{p,{rm top}}$ are found to give the frequencies closest to the solar observed ones, a more appropriate treatment of the top part of the 1D convective envelope is necessary.
We have investigated a time series of continuum intensity maps and corresponding Dopplergrams of granulation in a very quiet solar region at the disk center, recorded with the Imaging Magnetograph eXperiment (IMaX) on board the balloon-borne solar ob servatory Sunrise. We find that granules frequently show substructure in the form of lanes composed of a leading bright rim and a trailing dark edge, which move together from the boundary of a granule into the granule itself. We find strikingly similar events in synthesized intensity maps from an ab initio numerical simulation of solar surface convection. From cross sections through the computational domain of the simulation, we conclude that these `granular lanes are the visible signature of (horizontally oriented) vortex tubes. The characteristic optical appearance of vortex tubes at the solar surface is explained. We propose that the observed vortex tubes may represent only the large-scale end of a hierarchy of vortex tubes existing near the solar surface.
163 - T. Khouri , A. de Koter , L. Decin 2014
Asymptotic giant branch (AGB) stars lose their envelopes by means of a stellar wind whose driving mechanism is not understood well. Characterizing the composition and thermal and dynamical structure of the outflow provides constraints that are essent ial for understanding AGB evolution, including the rate of mass loss and isotopic ratios. We modeled the CO emission from the wind of the low mass-loss rate oxygen-rich AGB star W Hya using data obtained by the HIFI, PACS, and SPIRE instruments onboard the Herschel Space Observatory and ground-based telescopes. $^{12}$CO and $^{13}$CO lines are used to constrain the intrinsic $^{12}$C/$^{13}$C ratio from resolved HIFI lines. The acceleration of the outflow up to about 5.5 km/s is quite slow and can be represented by a beta-type velocity law with index 5. Beyond this point, acceleration up the terminal velocity of 7 km/s is faster. Using the J=10-9, 9-8, and 6-5 transitions, we find an intrinsic $^{12}$C/$^{13}$C ratio of $18pm10$ for W Hya, where the error bar is mostly due to uncertainties in the $^{12}$CO abundance and the stellar flux around 4.6 $mu$m. To match the low-excitation CO lines, these molecules need to be photo-dissociated at about 500 stellar radii. The radial dust emission intensity profile measured by PACS images at 70 $mu$m shows substantially stronger emission than our model predicts beyond 20 arcsec. The initial slow acceleration of the wind implies inefficient wind driving in the lower part of the envelope. The final injection of momentum in the wind might be the result of an increase in the opacity thanks to the late condensation of dust species. The derived intrinsic isotopologue ratio for W Hya is consistent with values set by the first dredge-up and suggestive of an initial mass of 2 M$_odot$ or more. However, the uncertainty in the main-sequence mass derived based on this isotopologic ratio is large.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا