ﻻ يوجد ملخص باللغة العربية
The granulation background seen in the power spectrum of a solar-like oscillator poses a serious challenge for extracting precise and detailed information about the stellar oscillations. Using a 3D hydrodynamical simulation of the Sun computed with CO$^5$BOLD, we investigate various background models to infer, using a Bayesian methodology, which one provides the best fit to the background in the simulated power spectrum. We find that the best fit is provided by an expression including the overall power level and two characteristic frequencies, one with an exponent of 2 and one with a free exponent taking on a value around 6. We assess the impact of the 3D hydro-code on this result by repeating the analysis with a simulation from Stagger and find that the main conclusion is unchanged. However, the details of the resulting best fits differ slightly between the two codes, but we explain this difference by studying the effect of the spatial resolution and the duration of the simulation on the fit. Additionally, we look into the impact of adding white noise to the simulated time series as a simple way to mimic a real star. We find that, as long as the noise level is not too low, the results are consistent with the no-noise case.
The solar granulation is known for a long time to be a surface manifestation of convection. Thanks to the current space-borne missions CoRoT and Kepler, it is now possible to observe in disk-integrated intensity the signature of this phenomena in a g
A large set of stars observed by CoRoT and Kepler shows clear evidence for the presence of a stellar background, which is interpreted to arise from surface convection, i.e., granulation. These observations show that the characteristic time-scale (tau
The CoRoT and Kepler missions provided a wealth of high-quality data for solar-like oscillations. To make the best of such data for seismic inferences, we need theoretical models with precise near-surface structure, which has significant influence on
We have investigated a time series of continuum intensity maps and corresponding Dopplergrams of granulation in a very quiet solar region at the disk center, recorded with the Imaging Magnetograph eXperiment (IMaX) on board the balloon-borne solar ob
Asymptotic giant branch (AGB) stars lose their envelopes by means of a stellar wind whose driving mechanism is not understood well. Characterizing the composition and thermal and dynamical structure of the outflow provides constraints that are essent