ترغب بنشر مسار تعليمي؟ اضغط هنا

The wind of W Hya as seen by Herschel - I. The CO envelope

175   0   0.0 ( 0 )
 نشر من قبل Theo Khouri
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Asymptotic giant branch (AGB) stars lose their envelopes by means of a stellar wind whose driving mechanism is not understood well. Characterizing the composition and thermal and dynamical structure of the outflow provides constraints that are essential for understanding AGB evolution, including the rate of mass loss and isotopic ratios. We modeled the CO emission from the wind of the low mass-loss rate oxygen-rich AGB star W Hya using data obtained by the HIFI, PACS, and SPIRE instruments onboard the Herschel Space Observatory and ground-based telescopes. $^{12}$CO and $^{13}$CO lines are used to constrain the intrinsic $^{12}$C/$^{13}$C ratio from resolved HIFI lines. The acceleration of the outflow up to about 5.5 km/s is quite slow and can be represented by a beta-type velocity law with index 5. Beyond this point, acceleration up the terminal velocity of 7 km/s is faster. Using the J=10-9, 9-8, and 6-5 transitions, we find an intrinsic $^{12}$C/$^{13}$C ratio of $18pm10$ for W Hya, where the error bar is mostly due to uncertainties in the $^{12}$CO abundance and the stellar flux around 4.6 $mu$m. To match the low-excitation CO lines, these molecules need to be photo-dissociated at about 500 stellar radii. The radial dust emission intensity profile measured by PACS images at 70 $mu$m shows substantially stronger emission than our model predicts beyond 20 arcsec. The initial slow acceleration of the wind implies inefficient wind driving in the lower part of the envelope. The final injection of momentum in the wind might be the result of an increase in the opacity thanks to the late condensation of dust species. The derived intrinsic isotopologue ratio for W Hya is consistent with values set by the first dredge-up and suggestive of an initial mass of 2 M$_odot$ or more. However, the uncertainty in the main-sequence mass derived based on this isotopologic ratio is large.



قيم البحث

اقرأ أيضاً

199 - T. Khouri , A. de Koter , L. Decin 2014
The evolution of low- and intermediate-mass stars on the asymptotic giant branch (AGB) is mainly controlled by the rate at which these stars lose mass in a stellar wind. Understanding the driving mechanism and strength of the stellar winds of AGB sta rs and the processes enriching their surfaces with products of nucleosynthesis are paramount to constraining AGB evolution and predicting the chemical evolution of galaxies. In a previous paper we have constrained the structure of the outflowing envelope of W Hya using spectral lines of the $^{12}$CO molecule. Here we broaden this study by modelling an extensive set of H$_{2}$O and $^{28}$SiO lines observed by the three instruments on board Herschel using a state-of-the-art molecular excitation and radiative transfer code. The oxygen isotopic ratios and the $^{28}$SiO abundance profile can be connected to the initial stellar mass and to crucial aspects of dust formation at the base of the stellar wind, respectively. The modelling of H$_{2}$O and $^{28}$SiO confirms the properties of the envelope model of W Hya derived from $^{12}$CO lines. We find an H$_2$O ortho-to-para ratio of 2.5,$^{+2.5}_{-1.0}$, consistent with what is expected for an AGB wind. The O$^{16}$/O$^{17}$ ratio indicates that W Hya has an initial mass of about 1.5 M$_odot$. Although the ortho- and para-H$_{2}$O lines observed by HIFI appear to trace gas of slightly different physical properties, a turbulence velocity of $0.7pm0.1$ km s$^{-1}$ fits the HIFI lines of both spin isomers and those of $^{28}$SiO well. The ortho- and para-H$_2^{16}$O and $^{28}$SiO abundances relative to H$_{2}$ are $(6^{+3}_{-2}) times 10^{-4}$, $(3^{+2}_{-1}) times 10^{-4}$, and $(3.3pm 0.8)times 10^{-5}$, respectively. Assuming a solar silicon-to-carbon ratio, the $^{28}$SiO line emission model is consistent with about one-third of the silicon atoms being locked up in dust particles.
Aims. We analyze the surroundings of HD 97300, one of two intermediate-mass stars in the Chamaeleon I star-forming region. The star is known to be surrounded by a conspicuous ring of polycyclic aromatic hydrocarbons (PAHs). Methods. We present infr ared images taken with Herschel and Spitzer using 11 different broad-band filters between 3.6 um and 500 um. We compare the morphology of the emission using cuts along different position angles. We construct spectral energy distributions, which we compare to different dust models, and calculate dust temperatures. We also derive opacity maps and analyze the density structure of the environment of HD 97300. Results. We find that HD 97300 has no infrared excess at or below 24 um, confirming its zero-age main-sequence nature. The morphology of the ring is very similar between 3.6 um and 24 um. The emission at these wavelengths is dominated by either PAH features or PAH continuum. At longer wavelengths, only the northwestern part of the ring is visible. A fit to the 100-500 um observations suggests that the emission is due to relatively warm (~26 K) dust. The temperature gradually decreases with increasing distance from the ring. We find a general decrease in the density from north to south, and an approximate 10% density increase in the northeastern part of the ring. Conclusions. Our results are consistent with the theory that the ring around HD 97300 is essentially a bubble blown into the surrounding interstellar matter and heated by the star.
The S-type asymptotic giant branch (AGB) star $pi^{1}$ Gruis has a known companion at a separation of $approx$400 AU. The envelope structure, including an equatorial torus and a fast bipolar outflow, is rarely seen in the AGB phase and is particularl y unexpected in such a wide binary system. Therefore a second, closer companion has been suggested, but the evidence is not conclusive. The new ALMA $^{12}$CO and $^{13}$CO $J$=3-2 data, together with previously published $^{12}$CO $J$=2-1 data from the Submillimeter Array (SMA), and the $^{12}$CO $J$=5-4 and $J$=9-8 lines observed with Herschel/Heterodyne Instrument for the Far-Infrared (HIFI), is modeled with the 3D non-LTE radiative transfer code SHAPEMOL. The data analysis clearly confirms the torus-bipolar structure. The 3D model of the CSE that satisfactorily reproduces the data consists of three kinematic components: a radially expanding torus with velocity slowly increasing from 8 to 13 km s$^{-1}$ along the equator plane; a radially expanding component at the center with a constant velocity of 14 km s$^{-1}$; and a fast, bipolar outflow with velocity proportionally increasing from 14 km s$^{-1}$ at the base up to 100 km s$^{-1}$ at the tip, following a linear radial dependence. The results are used to estimate an average mass-loss rate during the creation of the torus of 7.7$times$10$^{-7}$ M$_{odot}$ yr$^{-1}$. The total mass and linear momentum of the fast outflow are estimated at 7.3$times$10$^{-4}$ M$_{odot}$ and 9.6$times$10$^{37}$ g cm s$^{-1}$, respectively. The momentum of the outflow is in excess (by a factor of about 20) of what could be generated by radiation pressure alone, in agreement with recent findings for more evolved sources. The best-fit model also suggests a $^{12}$CO/$^{13}$CO abundance ratio of 50. Possible shaping scenarios for the gas envelope are discussed
Context. Circumstellar discs are the places where planets form, therefore knowledge of their evolution is crucial for our understanding of planet formation. The Herschel Space Observatory is providing valuable data for studying disc systems, thanks t o its sensitivity and wavelength coverage. This paper is one of several devoted to analysing and modelling Herschel-PACS observations of various young stellar associations from the GASPS Open Time Key Programme. Aims. The aim of this paper is to elucidate the gas and dust properties of circumstellar discs in the 10 Myr TW Hya Association (TWA) using new far-infrared (IR) imaging and spectroscopy from Herschel-PACS. Methods. We obtained far-IR photometric data at 70, 100, and 160 microns of 14 TWA members; spectroscopic observations centred on the [OI] line at 63.18 microns were also obtained for 9 of the 14. The new photometry for each star was incorporated into its full spectral energy distribution (SED). Results. We detected excess IR emission that is characteristic of circumstellar discs from five TWA members, and computed upper limits for another nine. Two TWA members (TWA 01 and TWA 04B) also show [OI] emission at 63.18 microns. Discs in the TWA association display a variety of properties, with a wide range of dust masses and inner radii, based on modified blackbody modelling. Both transitional and debris discs are found in the sample. Models for sources with a detected IR excess give dust masses in the range from 0.15 Msun to 63 Msun.
337 - Kamber R. Schwarz 2016
CO is widely used as a tracer of molecular gas. However, there is now mounting evidence that gas phase carbon is depleted in the disk around TW Hya. Previous efforts to quantify this depletion have been hampered by uncertainties regarding the radial thermal structure in the disk. Here we present resolved ALMA observations of 13CO 3-2, C18O 3-2, 13CO 6-5, and C18O 6-5 emission in TW Hya, which allow us to derive radial gas temperature and gas surface density profiles, as well as map the CO abundance as a function of radius. These observations provide a measurement of the surface CO snowline at ~30 AU and show evidence for an outer ring of CO emission centered at 53 AU, a feature previously seen only in less abundant species. Further, the derived CO gas temperature profile constrains the freeze-out temperature of CO in the warm molecular layer to < 21 K. Combined with the previous detection of HD 1-0, these data constrain the surface density of the warm H2 gas in the inner ~30 AU. We find that CO is depleted by two orders of magnitude from R=10-60 AU, with the small amount of CO returning to the gas phase inside the surface CO snowline insufficient to explain the overall depletion. Finally, this new data is used in conjunction with previous modeling of the TW Hya disk to constrain the midplane CO snowline to 17-23 AU.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا