ﻻ يوجد ملخص باللغة العربية
A large set of stars observed by CoRoT and Kepler shows clear evidence for the presence of a stellar background, which is interpreted to arise from surface convection, i.e., granulation. These observations show that the characteristic time-scale (tau_eff) and the root-mean-square (rms) brightness fluctuations (sigma) associated with the granulation scale as a function of the peak frequency (nu_max) of the solar-like oscillations. We aim at providing a theoretical background to the observed scaling relations based on a model developed in the companion paper. We computed for each 3D model the theoretical power density spectrum (PDS) associated with the granulation as seen in disk-integrated intensity on the basis of the theoretical model. For each PDS we derived tau_eff and sigma and compared these theoretical values with the theoretical scaling relations derived from the theoretical model and the Kepler measurements. We derive theoretical scaling relations for tau_eff and sigma, which show the same dependence on nu_max as the observed scaling relations. In addition, we show that these quantities also scale as a function of the turbulent Mach number (Ma) estimated at the photosphere. The theoretical scaling relations for tau_eff and sigma match the observations well on a global scale. Our modelling provides additional theoretical support for the observed variations of sigma and tau_eff with nu_m max. It also highlights the important role of Ma in controlling the properties of the stellar granulation. However, the observations made with Kepler on a wide variety of stars cannot confirm the dependence of our scaling relations on Ma. Measurements of the granulation background and detections of solar-like oscillations in a statistically sufficient number of cool dwarf stars will be required for confirming the dependence of the theoretical scaling relations with Ma.
The solar granulation is known for a long time to be a surface manifestation of convection. Thanks to the current space-borne missions CoRoT and Kepler, it is now possible to observe in disk-integrated intensity the signature of this phenomena in a g
The granulation background seen in the power spectrum of a solar-like oscillator poses a serious challenge for extracting precise and detailed information about the stellar oscillations. Using a 3D hydrodynamical simulation of the Sun computed with C
A large fraction of cool, low-mass stars exhibit brightness fluctuations that arise from a combination of convective granulation, acoustic oscillations, magnetic activity, and stellar rotation. Much of the short-timescale variability takes the form o
We have investigated a time series of continuum intensity maps and corresponding Dopplergrams of granulation in a very quiet solar region at the disk center, recorded with the Imaging Magnetograph eXperiment (IMaX) on board the balloon-borne solar ob
We explore how the slopes and scatters of the scaling relations of disk galaxies (Vm-L[-M], R-L[-M], and Vm-R) do change when moving from B to K bands and to stellar and baryonic quantities. For our compiled sample of 76 normal, non-interacting high