ﻻ يوجد ملخص باللغة العربية
We investigate the phenomenology emerging from a 2-species dynamics under the scenario of a quasi-neutral competition within a metapopulation framework. We employ stochastic and deterministic approaches, namely spatially-constrained individual-based Monte Carlo simulations and coupled mean-field ODEs. Our results show the multifold interplay between competition, birth-death dynamics and spatial constraints induces a nonmonotonic relation between the ecological majority-minority switching and the diffusion between patches. This means that diffusion can set off birth-death ratios and enhance the preservation of a species.
A classic measure of ecological stability describes the tendency of a community to return to equilibrium after small perturbation. While many advances show how the network structure of these communities severely constrains such tendencies, few if any
Multiple scales in metapopulations can give rise to paradoxical behaviour: in a conceptual model for a public goods game, the species associated with a fitness cost due to the public good production can be stabilised in the well-mixed limit due to th
The stabilizing effects of local enrichment are revisited. Diffusively coupled host-parasitoid and predator-prey metapopulations are shown to admit a stable fixed point, limit cycle or stable torus with a rich bifurcation structure. A linear toy mode
We develop a new perturbation method for studying quasi-neutral competition in a broad class of stochastic competition models, and apply it to the analysis of fixation of competing strains in two epidemic models. The first model is a two-strain gener
Empirical observations show that ecological communities can have a huge number of coexisting species, also with few or limited number of resources. These ecosystems are characterized by multiple type of interactions, in particular displaying cooperat