ترغب بنشر مسار تعليمي؟ اضغط هنا

Diffusion plays an unusual role in ecological quasi-neutral competition in metapopulations

92   0   0.0 ( 0 )
 نشر من قبل Nuno Crokidakis
 تاريخ النشر 2020
  مجال البحث علم الأحياء فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the phenomenology emerging from a 2-species dynamics under the scenario of a quasi-neutral competition within a metapopulation framework. We employ stochastic and deterministic approaches, namely spatially-constrained individual-based Monte Carlo simulations and coupled mean-field ODEs. Our results show the multifold interplay between competition, birth-death dynamics and spatial constraints induces a nonmonotonic relation between the ecological majority-minority switching and the diffusion between patches. This means that diffusion can set off birth-death ratios and enhance the preservation of a species.



قيم البحث

اقرأ أيضاً

A classic measure of ecological stability describes the tendency of a community to return to equilibrium after small perturbation. While many advances show how the network structure of these communities severely constrains such tendencies, few if any of these advances address one of the most fundamental properties of network structure: heterogeneity among nodes with different numbers of links. Here we systematically explore this property of degree heterogeneity and find that its effects on stability systematically vary with different types of interspecific interactions. Degree heterogeneity is always destabilizing in ecological networks with both competitive and mutualistic interactions while its effects on networks of predator-prey interactions such as food webs depend on prey contiguity, i.e., the extent to which the species consume an unbroken sequence of prey in community niche space. Increasing degree heterogeneity stabilizes food webs except those with the most contiguity. These findings help explain previously unexplained observations that food webs are highly but not completely contiguous and, more broadly, deepens our understanding of the stability of complex ecological networks with important implications for other types of dynamical systems.
108 - Marianne Bauer , Erwin Frey 2018
Multiple scales in metapopulations can give rise to paradoxical behaviour: in a conceptual model for a public goods game, the species associated with a fitness cost due to the public good production can be stabilised in the well-mixed limit due to th e mere existence of these scales. The scales in this model involve a length scale corresponding to separate patches, coupled by mobility, and separate time scales for reproduction and interaction with a local environment. Contrary to the well-mixed high mobility limit, we find that for low mobilities, the interaction rate progressively stabilises this species due to stochastic effects, and that the formation of spatial patterns is not crucial for this stabilisation.
The stabilizing effects of local enrichment are revisited. Diffusively coupled host-parasitoid and predator-prey metapopulations are shown to admit a stable fixed point, limit cycle or stable torus with a rich bifurcation structure. A linear toy mode l that yields many of the basic qualitative features of this system is presented. The further nonlinear complications are analyzed in the framework of the marginally stable Lotka-Volterra model, and the continuous time analog of the unstable, host-parasitoid Nicholson-Bailey model. The dependence of the results on the migration rate and level of spatial variations is examined, and the possibility of nonlocal effect of enrichment, where local enrichment induces stable oscillations at a distance, is studied. A simple method for basic estimation of the relative importance of this effect in experimental systems is presented and exemplified.
We develop a new perturbation method for studying quasi-neutral competition in a broad class of stochastic competition models, and apply it to the analysis of fixation of competing strains in two epidemic models. The first model is a two-strain gener alization of the stochastic Susceptible-Infected-Susceptible (SIS) model. Here we extend previous results due to Parsons and Quince (2007), Parsons et al (2008) and Lin, Kim and Doering (2012). The second model, a two-strain generalization of the stochastic Susceptible-Infected-Recovered (SIR) model with population turnover, has not been studied previously. In each of the two models, when the basic reproduction numbers of the two strains are identical, a system with an infinite population size approaches a point on the deterministic coexistence line (CL): a straight line of fixed points in the phase space of sub-population sizes. Shot noise drives one of the strain populations to fixation, and the other to extinction, on a time scale proportional to the total population size. Our perturbation method explicitly tracks the dynamics of the probability distribution of the sub-populations in the vicinity of the CL. We argue that, whereas the slow strain has a competitive advantage for mathematically typical initial conditions, it is the fast strain that is more likely to win in the important situation when a few infectives of both strains are introduced into a susceptible population.
Empirical observations show that ecological communities can have a huge number of coexisting species, also with few or limited number of resources. These ecosystems are characterized by multiple type of interactions, in particular displaying cooperat ive behaviors. However, standard modeling of population dynamics based on Lotka-Volterra type of equations predicts that ecosystem stability should decrease as the number of species in the community increases and that cooperative systems are less stable than communities with only competitive and/or exploitative interactions. Here we propose a stochastic model of population dynamics, which includes exploitative interactions as well as cooperative interactions induced by cross-feeding. The model is exactly solved and we obtain results for relevant macro-ecological patterns, such as species abundance distributions and correlation functions. In the large system size limit, any number of species can coexist for a very general class of interaction networks and stability increases as the number of species grows. For pure mutualistic/commensalistic interactions we determine the topological properties of the network that guarantee species coexistence. We also show that the stationary state is globally stable and that inferring species interactions through species abundance correlation analysis may be misleading. Our theoretical approach thus show that appropriate models of cooperation naturally leads to a solution of the long-standing question about complexity-stability paradox and on how highly biodiverse communities can coexist.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا