ﻻ يوجد ملخص باللغة العربية
Multiple scales in metapopulations can give rise to paradoxical behaviour: in a conceptual model for a public goods game, the species associated with a fitness cost due to the public good production can be stabilised in the well-mixed limit due to the mere existence of these scales. The scales in this model involve a length scale corresponding to separate patches, coupled by mobility, and separate time scales for reproduction and interaction with a local environment. Contrary to the well-mixed high mobility limit, we find that for low mobilities, the interaction rate progressively stabilises this species due to stochastic effects, and that the formation of spatial patterns is not crucial for this stabilisation.
Epidemic spreading phenomena are ubiquitous in nature and society. Examples include the spreading of diseases, information, and computer viruses. Epidemics can spread by local spreading, where infected nodes can only infect a limited set of direct ta
Recently, Press and Dyson have proposed a new class of probabilistic and conditional strategies for the two-player iterated Prisoners Dilemma, so-called zero-determinant strategies. A player adopting zero-determinant strategies is able to pin the exp
The recent outbreak of a novel coronavirus and its rapid spread underlines the importance of understanding human mobility. Enclosed spaces, such as public transport vehicles (e.g. buses and trains), offer a suitable environment for infections to spre
We investigate the phenomenology emerging from a 2-species dynamics under the scenario of a quasi-neutral competition within a metapopulation framework. We employ stochastic and deterministic approaches, namely spatially-constrained individual-based
Cytosine methylation has been found to play a crucial role in various biological processes, including a number of human diseases. The detection of this small modification remains challenging. In this work, we computationally explore the possibility o