ترغب بنشر مسار تعليمي؟ اضغط هنا

Fingerprints of the electron skew-scattering on paramagnetic impurities in semiconductor systems

55   0   0.0 ( 0 )
 نشر من قبل Mikhail Rakitskii
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we argue that the electron skew-scattering on paramagnetic impurities in non-magnetic systems, such as bulk semiconductors, possesses a remarkable fingerprint allowing to differentiate it directly from other microscopic mechanisms of the emergent Hall response. We demonstrate theoretically that the exchange interaction between the impurity magnetic moment and mobile electrons leads to the emergence of an electric Hall current persisting even at zero electron spin polarization. We describe two microscopic mechanisms behind this effect, namely the exchange interaction assisted skew-scattering and the conversion of the SHE induced transverse spin current to the charge one owing to the difference between the spin-up and spin-down conductivities. We propose an essentially all-electric scheme based on a spin-injection ferromagnetic-semiconductor device which allows one to reveal the effect of paramagnetic impurities on the Hall phenomena via the detection of the spin polarization independent terms in the Hall voltage.



قيم البحث

اقرأ أيضاً

We obtain a microscopic description of the interaction between electron spins in bulk semiconductors and in pairs of semiconductor quantum dots. Treating the k.p band mixing and the Coulomb interaction on the same footing, we obtain in the third orde r an asymmetric contribution to the exchange interaction arising from the coupling between the spin of one electron and the relative orbital motion of the other. This contribution does not depend on the inversion asymmetry of the crystal. We find that it is ~0.001 of the isotropic exchange, which is of interest in quantum information. Detailed evaluations are given for several quantum dot systems.
Similar to nitrogen-vacancy centers in diamond and impurity atoms in silicon, interstitial gallium deep paramagnetic centers in GaAsN have been proven to have useful characteristics for the development of spintronic devices. Among other interesting p roperties, under circularly polarized light, gallium centers in GaAsN act as spin filters that dynamically polarize free and bound electrons reaching record spin polarizations (100%). Furthermore, the recent observation of the amplification of the spin filtering effect under a Faraday configuration magnetic field has suggested that the hyperfine interaction that couples bound electrons and nuclei permits the optical manipulation of its nuclear spin polarization. Even though the mechanisms behind the nuclear spin polarization in gallium centers are fairly well understood, the origin of nuclear spin relaxation and the formation of an Overhauser-like magnetic field remain elusive. In this work we develop a model based on the master equation approach to describe the evolution of electronic and nuclear spin polarizations of gallium centers interacting with free electrons and holes. Our results are in good agreement with existing experimental observations. In regard to the nuclear spin relaxation, the roles of nuclear dipolar and quadrupolar interactions are discussed. Our findings show that, besides the hyperfine interaction, the spin relaxation mechanisms are key to understand the amplification of the spin filtering effect and the appearance of the Overhauser-like magnetic field. Based on our models results we propose an experimental protocol based on time resolved spectroscopy. It consists of a pump-probe photoluminescence scheme that would allow the detection and the tracing of the electron-nucleus flip-flops through time resolved PL measurements.
Quasiparticle states in Dirac systems with complex impurity potentials are investigated. It is shown that an impurity site with loss leads to a nontrivial distribution of the local density of states (LDOS). While the real part of defect potential ind uces a well-pronounced peak in the density of states (DOS), the DOS is either weakly enhanced at small frequencies or even forms a peak at the zero frequency for a lattice in the case of non-Hermitian impurity. As for the spatial distribution of the LDOS, it is enhanced in the vicinity of impurity but shows a dip at a defect itself when the potential is sufficiently strong. The results for a two-dimensional hexagonal lattice demonstrate the characteristic trigonal-shaped profile for the LDOS. The latter acquires a double-trigonal pattern in the case of two defects placed at neighboring sites. The effects of non-Hermitian impurities could be tested both in photonic lattices and certain condensed matter setups.
Twisted van der Waals materials open up novel avenues to control electronic correlation and topological effects. These systems contain the unprecedented possibility to precisely tune strong correlations, topology, magnetism, nematicity, and supercond uctivity with an external non-invasive electrostatic doping. By doing so, rich phase diagrams featuring an interplay of different states of correlated quantum matter can be unveiled. The nature of the superconducting order presents a recurring overarching open question in this context. In this work, we quantitatively assess the case of spin-fluctuation-mediated pairing for $Gamma$-valley twisted transition metal dichalcogenide homobilayers. We construct a low-energy honeycomb model on which basis we self-consistently and dynamically calculate a doping dependent phase diagram for the superconducting transition temperature $T_{mathrm{c}}$. A superconducting dome emerges with a maximal $T_{mathrm{c}}approx$ 0.1-1 K depending on twist angle. We qualitatively compare our results with conventional phonon-mediated superconductivity and discern clear fingerprints which are detectable in doping-dependent measurements of the superconducting transition temperature, providing direct access to probing the superconducting pairing mechanism in twisted Van der Waals materials.
173 - M. Sich 2011
Microcavity polaritons are composite half-light half-matter quasi-particles, which have recently been demonstrated to exhibit rich physical properties, such as non-equilibrium Bose-Einstein condensation, parametric scattering and superfluidity. At th e same time, polaritons have some important advantages over photons for information processing applications, since their excitonic component leads to weaker diffraction and stronger inter-particle interactions, implying, respectively, tighter localization and lower powers for nonlinear functionality. Here we present the first experimental observations of bright polariton solitons in a strongly coupled semiconductor microcavity. The polariton solitons are shown to be non-diffracting high density wavepackets, that are strongly localised in real space with a corresponding broad spectrum in momentum space. Unlike solitons known in other matter-wave systems such as Bose condensed ultracold atomic gases, they are non-equilibrium and rely on a balance between losses and external pumping. Microcavity polariton solitons are excited on picosecond timescales, and thus have significant benefits for ultrafast switching and transfer of information over their light only counterparts, semiconductor cavity lasers (VCSELs), which have only nanosecond response time.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا