ترغب بنشر مسار تعليمي؟ اضغط هنا

Observation of bright polariton solitons in a semiconductor microcavity

172   0   0.0 ( 0 )
 نشر من قبل Maksym Sich
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف M. Sich




اسأل ChatGPT حول البحث

Microcavity polaritons are composite half-light half-matter quasi-particles, which have recently been demonstrated to exhibit rich physical properties, such as non-equilibrium Bose-Einstein condensation, parametric scattering and superfluidity. At the same time, polaritons have some important advantages over photons for information processing applications, since their excitonic component leads to weaker diffraction and stronger inter-particle interactions, implying, respectively, tighter localization and lower powers for nonlinear functionality. Here we present the first experimental observations of bright polariton solitons in a strongly coupled semiconductor microcavity. The polariton solitons are shown to be non-diffracting high density wavepackets, that are strongly localised in real space with a corresponding broad spectrum in momentum space. Unlike solitons known in other matter-wave systems such as Bose condensed ultracold atomic gases, they are non-equilibrium and rely on a balance between losses and external pumping. Microcavity polariton solitons are excited on picosecond timescales, and thus have significant benefits for ultrafast switching and transfer of information over their light only counterparts, semiconductor cavity lasers (VCSELs), which have only nanosecond response time.



قيم البحث

اقرأ أيضاً

Polariton spin carries the combination of the exciton and the photon spin, which is manifested in the circularly polarized emission degree in a III-V quantum wells microcavity system. Relaxation process of such spin system is a complex subject since it involve upper or lower polariton branch, resonant or non resonant polariton excitation process and if the particles are in strong or weak coupling regime. We present here experimental polariton spin Faraday rotation time measurement in GaAs single quantum well microcavity, using time resolved polariton photoluminescence by resonant excitation process in a pump-probe system.
269 - Marco Romanelli 2005
We demonstrate a novel kind of polariton four wave mixing oscillation. Two pump polaritons scatter towards final states that emit two beams of equal intensity, separated both spatially and in polarization with respect to the pumps. The measurement of the intensity fluctuations of the emitted light demonstrates that the final states are strongly correlated.
209 - N. A. Gippius 2003
We demonstrate experimentally an unusual behavior of the parametric polariton scattering in semiconductor microcavity under a strong cw resonant excitation. The maximum of the scattered signal above the threshold of stimulated parametric scattering d oes not shift along the microcavity lower polariton branch with the change of pump detuning or angle of incidence but is stuck around the normal direction. We show theoretically that such a behavior can be modelled numerically by a system of Maxwell and nonlinear Schroedinger equations for cavity polaritons and explained via the competition between the bistability of a driven nonlinear MC polariton and the instabilities of parametric polariton-polariton scattering.
The Higgs amplitude mode is a collective excitation studied and observed in a broad class of matter, including superconductors, charge density waves, antiferromagnets, 3He p-wave superfluid, and ultracold atomic condensates. In all the observations r eported thus far, the amplitude mode was excited by perturbing the condensate out of equilibrium. Studying an exciton-polariton condensate, here we report the first observation of this mode purely driven by intrinsic quantum fluctuations without such perturbations. By using an ultrahigh quality microcavity and a Raman spectrometer to maximally reject photoluminescence from the condensate, we observe weak but distinct photoluminescence at energies below the condensate emission. We identify this as the so-called ghost branches of the amplitude mode arising from quantum depletion of the condensate into this mode. These energies, as well as the overall structure of the photoluminescence spectra, are in good agreement with our theoretical analysis.
In one-dimensional quantum systems with strong long-range repulsion particles arrange in a quasi-periodic chain, the Wigner crystal. We demonstrate that besides the familiar phonons, such one-dimensional Wigner crystal supports an additional mode of elementary excitations, which can be identified with solitons in the classical limit. We compute the corresponding excitation spectrum and argue that the solitons have a parametrically small decay rate at low energies. We discuss implications of our results for the behavior of the dynamic structure factor.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا