ﻻ يوجد ملخص باللغة العربية
We obtain a microscopic description of the interaction between electron spins in bulk semiconductors and in pairs of semiconductor quantum dots. Treating the k.p band mixing and the Coulomb interaction on the same footing, we obtain in the third order an asymmetric contribution to the exchange interaction arising from the coupling between the spin of one electron and the relative orbital motion of the other. This contribution does not depend on the inversion asymmetry of the crystal. We find that it is ~0.001 of the isotropic exchange, which is of interest in quantum information. Detailed evaluations are given for several quantum dot systems.
A spin qubit in semiconductor quantum dots holds promise for quantum information processing for scalability and long coherence time. An important semiconductor qubit system is a double quantum dot trapping two electrons or holes, whose spin states en
We present an adiabatic approach to the design of entangling quantum operations with two electron spins localized in separate InAs/GaAs quantum dots via the Coulomb interaction between optically-excited localized states. Slowly-varying optical pulses
Because of their long coherence times and potential for scalability, semiconductor quantum-dot spin qubits hold great promise for quantum information processing. However, maintaining high connectivity between quantum-dot spin qubits, which favor line
We introduce an integrability-based method enabling the study of semiconductor quantum dot models incorporating both the full hyperfine interaction as well as a mean-field treatment of dipole-dipole interactions in the nuclear spin bath. By performin
We demonstrate electromagnetic interaction between distant quantum dots (QDs), as is observed from transient pump-probe differential reflectivity measurements. The QD-exciton lifetime is measured as a function of the probe photon energy and shows a s