ﻻ يوجد ملخص باللغة العربية
We introduce a new model for investigating spectral properties of quantum graphs, a quantum circulant graph. Circulant graphs are the Cayley graphs of cyclic groups. Quantum circulant graphs with standard vertex conditions maintain important features of the prototypical quantum star graph model. In particular, we show the spectrum is encoded in a secular equation with similar features. The secular equation of a quantum circulant graph takes two forms depending on whether the edge lengths respect the cyclic symmetry of the graph. When all the edge lengths are incommensurate, the spectral statistics correspond to those of random matrices from the Gaussian Orthogonal Ensemble according to the conjecture of Bohigas, Giannoni and Schmit. When the edge lengths respect the cyclic symmetry the spectrum decomposes into subspectra whose corresponding eigenfunctions transform according to irreducible representations of the cyclic group. We show that the subspectra exhibit intermediate spectral statistics and analyze the small and large parameter asymptotics of the two-point correlation function, applying techniques developed from star graphs. The particular form of the intermediate statistics differs from that seen for star graphs or Dirac rose graphs. As a further application, we show how the secular equations can be used to obtain spectral zeta functions using a contour integral technique. Results for the spectral determinant and vacuum energy of circulant graphs are obtained from the zeta functions.
The energy levels of a quantum graph with time reversal symmetry and unidirectional classical dynamics are doubly degenerate and obey the spectral statistics of the Gaussian Unitary Ensemble. These degeneracies, however, are lifted when the unidirect
We consider a 2D Schroedinger operator H0 with constant magnetic field, on a strip of finite width. The spectrum of H0 is absolutely continuous, and contains a discrete set of thresholds. We perturb H0 by an electric potential V which decays in a sui
$L$-ensembles are a class of determinantal point processes which can be viewed as a statistical mechanical systems in the grand canonical ensemble. Circulant $L$-ensembles are the subclass which are locally translationally invariant and furthermore s
This article deals with the spectra of Laplacians of weighted graphs. In this context, two objects are of fundamental importance for the dynamics of complex networks: the second eigenvalue of such a spectrum (called algebraic connectivity) and its as
It has been suggested that the distribution of the suitably normalized number of zeros of Laplacian eigenfunctions contains information about the geometry of the underlying domain. We study this distribution (more precisely, the distribution of the n