ترغب بنشر مسار تعليمي؟ اضغط هنا

High-Dimensional Sparse Linear Bandits

151   0   0.0 ( 0 )
 نشر من قبل Botao Hao
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Stochastic linear bandits with high-dimensional sparse features are a practical model for a variety of domains, including personalized medicine and online advertising. We derive a novel $Omega(n^{2/3})$ dimension-free minimax regret lower bound for sparse linear bandits in the data-poor regime where the horizon is smaller than the ambient dimension and where the feature vectors admit a well-conditioned exploration distribution. This is complemented by a nearly matching upper bound for an explore-then-commit algorithm showing that that $Theta(n^{2/3})$ is the optimal rate in the data-poor regime. The results complement existing bounds for the data-rich regime and provide another example where carefully balancing the trade-off between information and regret is necessary. Finally, we prove a dimension-free $O(sqrt{n})$ regret upper bound under an additional assumption on the magnitude of the signal for relevant features.



قيم البحث

اقرأ أيضاً

Stochastic sparse linear bandits offer a practical model for high-dimensional online decision-making problems and have a rich information-regret structure. In this work we explore the use of information-directed sampling (IDS), which naturally balanc es the information-regret trade-off. We develop a class of information-theoretic Bayesian regret bounds that nearly match existing lower bounds on a variety of problem instances, demonstrating the adaptivity of IDS. To efficiently implement sparse IDS, we propose an empirical Bayesian approach for sparse posterior sampling using a spike-and-slab Gaussian-Laplace prior. Numerical results demonstrate significant regret reductions by sparse IDS relative to several baselines.
166 - Zhimei Ren , Zhengyuan Zhou 2020
We study the problem of dynamic batch learning in high-dimensional sparse linear contextual bandits, where a decision maker can only adapt decisions at a batch level. In particular, the decision maker, only observing rewards at the end of each batch, dynamically decides how many individuals to include in the next batch (at the current batchs end) and what personalized action-selection scheme to adopt within the batch. Such batch constraints are ubiquitous in a variety of practical contexts, including personalized product offerings in marketing and medical treatment selection in clinical trials. We characterize the fundamental learning limit in this problem via a novel lower bound analysis and provide a simple, exploration-free algorithm that uses the LASSO estimator, which achieves the minimax optimal performance characterized by the lower bound (up to log factors). To our best knowledge, our work provides the first inroad into a rigorous understanding of dynamic batch learning with high-dimensional covariates. We also demonstrate the efficacy of our algorithm on both synthetic data and the Warfarin medical dosing data. The empirical results show that with three batches (hence only two opportunities to adapt), our algorithm already performs comparably (in terms of statistical performance) to the state-of-the-art fully online high-dimensional linear contextual bandits algorithm. As an added bonus, since our algorithm operates in batches, it is orders of magnitudes faster than fully online learning algorithms. As such, our algorithm provides a desirable candidate for practical data-driven personalized decision making problems, where limited adaptivity is often a hard constraint.
Standard approaches to decision-making under uncertainty focus on sequential exploration of the space of decisions. However, textit{simultaneously} proposing a batch of decisions, which leverages available resources for parallel experimentation, has the potential to rapidly accelerate exploration. We present a family of (parallel) contextual linear bandit algorithms, whose regret is nearly identical to their perfectly sequential counterparts -- given access to the same total number of oracle queries -- up to a lower-order burn-in term that is dependent on the context-set geometry. We provide matching information-theoretic lower bounds on parallel regret performance to establish our algorithms are asymptotically optimal in the time horizon. Finally, we also present an empirical evaluation of these parallel algorithms in several domains, including materials discovery and biological sequence design problems, to demonstrate the utility of parallelized bandits in practical settings.
We consider the stochastic contextual bandit problem under the high dimensional linear model. We focus on the case where the action space is finite and random, with each action associated with a randomly generated contextual covariate. This setting f inds essential applications such as personalized recommendation, online advertisement, and personalized medicine. However, it is very challenging as we need to balance exploration and exploitation. We propose doubly growing epochs and estimating the parameter using the best subset selection method, which is easy to implement in practice. This approach achieves $ tilde{mathcal{O}}(ssqrt{T})$ regret with high probability, which is nearly independent in the ``ambient regression model dimension $d$. We further attain a sharper $tilde{mathcal{O}}(sqrt{sT})$ regret by using the textsc{SupLinUCB} framework and match the minimax lower bound of low-dimensional linear stochastic bandit problems. Finally, we conduct extensive numerical experiments to demonstrate the applicability and robustness of our algorithms empirically.
We introduce GLR-klUCB, a novel algorithm for the piecewise iid non-stationary bandit problem with bounded rewards. This algorithm combines an efficient bandit algorithm, kl-UCB, with an efficient, parameter-free, changepoint detector, the Bernoulli Generalized Likelihood Ratio Test, for which we provide new theoretical guarantees of independent interest. Unlike previous non-stationary bandit algorithms using a change-point detector, GLR-klUCB does not need to be calibrated based on prior knowledge on the arms means. We prove that this algorithm can attain a $O(sqrt{TA Upsilon_Tlog(T)})$ regret in $T$ rounds on some easy instances, where A is the number of arms and $Upsilon_T$ the number of change-points, without prior knowledge of $Upsilon_T$. In contrast with recently proposed algorithms that are agnostic to $Upsilon_T$, we perform a numerical study showing that GLR-klUCB is also very efficient in practice, beyond easy instances.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا