ﻻ يوجد ملخص باللغة العربية
We consider the stochastic contextual bandit problem under the high dimensional linear model. We focus on the case where the action space is finite and random, with each action associated with a randomly generated contextual covariate. This setting finds essential applications such as personalized recommendation, online advertisement, and personalized medicine. However, it is very challenging as we need to balance exploration and exploitation. We propose doubly growing epochs and estimating the parameter using the best subset selection method, which is easy to implement in practice. This approach achieves $ tilde{mathcal{O}}(ssqrt{T})$ regret with high probability, which is nearly independent in the ``ambient regression model dimension $d$. We further attain a sharper $tilde{mathcal{O}}(sqrt{sT})$ regret by using the textsc{SupLinUCB} framework and match the minimax lower bound of low-dimensional linear stochastic bandit problems. Finally, we conduct extensive numerical experiments to demonstrate the applicability and robustness of our algorithms empirically.
Stochastic linear bandits with high-dimensional sparse features are a practical model for a variety of domains, including personalized medicine and online advertising. We derive a novel $Omega(n^{2/3})$ dimension-free minimax regret lower bound for s
Stochastic sparse linear bandits offer a practical model for high-dimensional online decision-making problems and have a rich information-regret structure. In this work we explore the use of information-directed sampling (IDS), which naturally balanc
The problem of inferring the direct causal parents of a response variable among a large set of explanatory variables is of high practical importance in many disciplines. Recent work in the field of causal discovery exploits invariance properties of m
We study a bandit version of phase retrieval where the learner chooses actions $(A_t)_{t=1}^n$ in the $d$-dimensional unit ball and the expected reward is $langle A_t, theta_starrangle^2$ where $theta_star in mathbb R^d$ is an unknown parameter vecto
Motivated by a natural problem in online model selection with bandit information, we introduce and analyze a best arm identification problem in the rested bandit setting, wherein arm expected losses decrease with the number of times the arm has been