ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning Open Set Network with Discriminative Reciprocal Points

113   0   0.0 ( 0 )
 نشر من قبل Guangyao Chen
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Open set recognition is an emerging research area that aims to simultaneously classify samples from predefined classes and identify the rest as unknown. In this process, one of the key challenges is to reduce the risk of generalizing the inherent characteristics of numerous unknown samples learned from a small amount of known data. In this paper, we propose a new concept, Reciprocal Point, which is the potential representation of the extra-class space corresponding to each known category. The sample can be classified to known or unknown by the otherness with reciprocal points. To tackle the open set problem, we offer a novel open space risk regularization term. Based on the bounded space constructed by reciprocal points, the risk of unknown is reduced through multi-category interaction. The novel learning framework called Reciprocal Point Learning (RPL), which can indirectly introduce the unknown information into the learner with only known classes, so as to learn more compact and discriminative representations. Moreover, we further construct a new large-scale challenging aircraft dataset for open set recognition: Aircraft 300 (Air-300). Extensive experiments on multiple benchmark datasets indicate that our framework is significantly superior to other existing approaches and achieves state-of-the-art performance on standard open set benchmarks.



قيم البحث

اقرأ أيضاً

Open set recognition (OSR), aiming to simultaneously classify the seen classes and identify the unseen classes as unknown, is essential for reliable machine learning.The key challenge of OSR is how to reduce the empirical classification risk on the l abeled known data and the open space risk on the potential unknown data simultaneously. To handle the challenge, we formulate the open space risk problem from the perspective of multi-class integration, and model the unexploited extra-class space with a novel concept Reciprocal Point. Follow this, a novel learning framework, termed Adversarial Reciprocal Point Learning (ARPL), is proposed to minimize the overlap of known distribution and unknown distributions without loss of known classification accuracy. Specifically, each reciprocal point is learned by the extra-class space with the corresponding known category, and the confrontation among multiple known categories are employed to reduce the empirical classification risk. Then, an adversarial margin constraint is proposed to reduce the open space risk by limiting the latent open space constructed by reciprocal points. To further estimate the unknown distribution from open space, an instantiated adversarial enhancement method is designed to generate diverse and confusing training samples, based on the adversarial mechanism between the reciprocal points and known classes. This can effectively enhance the model distinguishability to the unknown classes. Extensive experimental results on various benchmark datasets indicate that the proposed method is significantly superior to other existing approaches and achieves state-of-the-art performance.
Deep Convolutional Neural Networks (CNN) enforces supervised information only at the output layer, and hidden layers are trained by back propagating the prediction error from the output layer without explicit supervision. We propose a supervised feat ure learning approach, Label Consistent Neural Network, which enforces direct supervision in late hidden layers. We associate each neuron in a hidden layer with a particular class label and encourage it to be activated for input signals from the same class. More specifically, we introduce a label consistency regularization called discriminative representation error loss for late hidden layers and combine it with classification error loss to build our overall objective function. This label consistency constraint alleviates the common problem of gradient vanishing and tends to faster convergence; it also makes the features derived from late hidden layers discriminative enough for classification even using a simple $k$-NN classifier, since input signals from the same class will have very similar representations. Experimental results demonstrate that our approach achieves state-of-the-art performances on several public benchmarks for action and object category recognition.
Modern semi-supervised learning methods conventionally assume both labeled and unlabeled data have the same class distribution. However, unlabeled data may include out-of-class samples in practice; those that cannot have one-hot encoded labels from a closed-set of classes in label data, i.e., unlabeled data is an open-set. In this paper, we introduce OpenCoS, a method for handling this realistic semi-supervised learning scenario based on a recent framework of contrastive learning. One of our key findings is that out-of-class samples in the unlabeled dataset can be identified effectively via (unsupervised) contrastive learning. OpenCoS utilizes this information to overcome the failure modes in the existing state-of-the-art semi-supervised methods, e.g., ReMixMatch or FixMatch. It further improves the semi-supervised performance by utilizing soft- and pseudo-labels on open-set unlabeled data, learned from contrastive learning. Our extensive experimental results show the effectiveness of OpenCoS, fixing the state-of-the-art semi-supervised methods to be suitable for diverse scenarios involving open-set unlabeled data.
We extend panoptic segmentation to the open-world and introduce an open-set panoptic segmentation (OPS) task. This task requires performing panoptic segmentation for not only known classes but also unknown ones that have not been acknowledged during training. We investigate the practical challenges of the task and construct a benchmark on top of an existing dataset, COCO. In addition, we propose a novel exemplar-based open-set panoptic segmentation network (EOPSN) inspired by exemplar theory. Our approach identifies a new class based on exemplars, which are identified by clustering and employed as pseudo-ground-truths. The size of each class increases by mining new exemplars based on the similarities to the existing ones associated with the class. We evaluate EOPSN on the proposed benchmark and demonstrate the effectiveness of our proposals. The primary goal of our work is to draw the attention of the community to the recognition in the open-world scenarios. The implementation of our algorithm is available on the project webpage: https://cv.snu.ac.kr/research/EOPSN.
104 - Jun Li , Daoyu Lin , Yang Wang 2019
Learning powerful discriminative features for remote sensing image scene classification is a challenging computer vision problem. In the past, most classification approaches were based on handcrafted features. However, most recent approaches to remot e sensing scene classification are based on Convolutional Neural Networks (CNNs). The de facto practice when learning these CNN models is only to use original RGB patches as input with training performed on large amounts of labeled data (ImageNet). In this paper, we show class activation map (CAM) encoded CNN models, codenamed DDRL-AM, trained using original RGB patches and attention map based class information provide complementary information to the standard RGB deep models. To the best of our knowledge, we are the first to investigate attention information encoded CNNs. Additionally, to enhance the discriminability, we further employ a recently developed object function called center loss, which has proved to be very useful in face recognition. Finally, our framework provides attention guidance to the model in an end-to-end fashion. Extensive experiments on two benchmark datasets show that our approach matches or exceeds the performance of other methods.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا