ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning Discriminative Features via Label Consistent Neural Network

89   0   0.0 ( 0 )
 نشر من قبل Zhuolin Jiang
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Deep Convolutional Neural Networks (CNN) enforces supervised information only at the output layer, and hidden layers are trained by back propagating the prediction error from the output layer without explicit supervision. We propose a supervised feature learning approach, Label Consistent Neural Network, which enforces direct supervision in late hidden layers. We associate each neuron in a hidden layer with a particular class label and encourage it to be activated for input signals from the same class. More specifically, we introduce a label consistency regularization called discriminative representation error loss for late hidden layers and combine it with classification error loss to build our overall objective function. This label consistency constraint alleviates the common problem of gradient vanishing and tends to faster convergence; it also makes the features derived from late hidden layers discriminative enough for classification even using a simple $k$-NN classifier, since input signals from the same class will have very similar representations. Experimental results demonstrate that our approach achieves state-of-the-art performances on several public benchmarks for action and object category recognition.



قيم البحث

اقرأ أيضاً

92 - JT Wu , L.Wang 2019
The margin-based softmax loss functions greatly enhance intra-class compactness and perform well on the tasks of face recognition and object classification. Outperformance, however, depends on the careful hyperparameter selection. Moreover, the hard angle restriction also increases the risk of overfitting. In this paper, angular loss suggested by maximizing the angular gradient to promote intra-class compactness avoids overfitting. Besides, our method has only one adjustable constant for intra-class compactness control. We define three metrics to measure inter-class separability and intra-class compactness. In experiments, we test our method, as well as other methods, on many well-known datasets. Experimental results reveal that our method has the superiority of accuracy improvement, discriminative information, and time-consumption.
190 - Di Hu , Rui Qian , Minyue Jiang 2020
Discriminatively localizing sounding objects in cocktail-party, i.e., mixed sound scenes, is commonplace for humans, but still challenging for machines. In this paper, we propose a two-stage learning framework to perform self-supervised class-aware s ounding object localization. First, we propose to learn robust object representations by aggregating the candidate sound localization results in the single source scenes. Then, class-aware object localization maps are generated in the cocktail-party scenarios by referring the pre-learned object knowledge, and the sounding objects are accordingly selected by matching audio and visual object category distributions, where the audiovisual consistency is viewed as the self-supervised signal. Experimental results in both realistic and synthesized cocktail-party videos demonstrate that our model is superior in filtering out silent objects and pointing out the location of sounding objects of different classes. Code is available at https://github.com/DTaoo/Discriminative-Sounding-Objects-Localization.
Open set recognition is an emerging research area that aims to simultaneously classify samples from predefined classes and identify the rest as unknown. In this process, one of the key challenges is to reduce the risk of generalizing the inherent cha racteristics of numerous unknown samples learned from a small amount of known data. In this paper, we propose a new concept, Reciprocal Point, which is the potential representation of the extra-class space corresponding to each known category. The sample can be classified to known or unknown by the otherness with reciprocal points. To tackle the open set problem, we offer a novel open space risk regularization term. Based on the bounded space constructed by reciprocal points, the risk of unknown is reduced through multi-category interaction. The novel learning framework called Reciprocal Point Learning (RPL), which can indirectly introduce the unknown information into the learner with only known classes, so as to learn more compact and discriminative representations. Moreover, we further construct a new large-scale challenging aircraft dataset for open set recognition: Aircraft 300 (Air-300). Extensive experiments on multiple benchmark datasets indicate that our framework is significantly superior to other existing approaches and achieves state-of-the-art performance on standard open set benchmarks.
In this work, we revisit the global average pooling layer proposed in [13], and shed light on how it explicitly enables the convolutional neural network to have remarkable localization ability despite being trained on image-level labels. While this t echnique was previously proposed as a means for regularizing training, we find that it actually builds a generic localizable deep representation that can be applied to a variety of tasks. Despite the apparent simplicity of global average pooling, we are able to achieve 37.1% top-5 error for object localization on ILSVRC 2014, which is remarkably close to the 34.2% top-5 error achieved by a fully supervised CNN approach. We demonstrate that our network is able to localize the discriminative image regions on a variety of tasks despite not being trained for them
Images of scenes have various objects as well as abundant attributes, and diverse levels of visual categorization are possible. A natural image could be assigned with fine-grained labels that describe major components, coarse-grained labels that depi ct high level abstraction or a set of labels that reveal attributes. Such categorization at different concept layers can be modeled with label graphs encoding label information. In this paper, we exploit this rich information with a state-of-art deep learning framework, and propose a generic structured model that leverages diverse label relations to improve image classification performance. Our approach employs a novel stacked label prediction neural network, capturing both inter-level and intra-level label semantics. We evaluate our method on benchmark image datasets, and empirical results illustrate the efficacy of our model.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا