ترغب بنشر مسار تعليمي؟ اضغط هنا

OpenCoS: Contrastive Semi-supervised Learning for Handling Open-set Unlabeled Data

123   0   0.0 ( 0 )
 نشر من قبل Jongjin Park
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Modern semi-supervised learning methods conventionally assume both labeled and unlabeled data have the same class distribution. However, unlabeled data may include out-of-class samples in practice; those that cannot have one-hot encoded labels from a closed-set of classes in label data, i.e., unlabeled data is an open-set. In this paper, we introduce OpenCoS, a method for handling this realistic semi-supervised learning scenario based on a recent framework of contrastive learning. One of our key findings is that out-of-class samples in the unlabeled dataset can be identified effectively via (unsupervised) contrastive learning. OpenCoS utilizes this information to overcome the failure modes in the existing state-of-the-art semi-supervised methods, e.g., ReMixMatch or FixMatch. It further improves the semi-supervised performance by utilizing soft- and pseudo-labels on open-set unlabeled data, learned from contrastive learning. Our extensive experimental results show the effectiveness of OpenCoS, fixing the state-of-the-art semi-supervised methods to be suitable for diverse scenarios involving open-set unlabeled data.



قيم البحث

اقرأ أيضاً

Semi-supervised learning (SSL) is an effective means to leverage unlabeled data to improve a models performance. Typical SSL methods like FixMatch assume that labeled and unlabeled data share the same label space. However, in practice, unlabeled data can contain categories unseen in the labeled set, i.e., outliers, which can significantly harm the performance of SSL algorithms. To address this problem, we propose a novel Open-set Semi-Supervised Learning (OSSL) approach called OpenMatch. Learning representations of inliers while rejecting outliers is essential for the success of OSSL. To this end, OpenMatch unifies FixMatch with novelty detection based on one-vs-all (OVA) classifiers. The OVA-classifier outputs the confidence score of a sample being an inlier, providing a threshold to detect outliers. Another key contribution is an open-set soft-consistency regularization loss, which enhances the smoothness of the OVA-classifier with respect to input transformations and greatly improves outlier detection. OpenMatch achieves state-of-the-art performance on three datasets, and even outperforms a fully supervised model in detecting outliers unseen in unlabeled data on CIFAR10.
Open-set semi-supervised learning (open-set SSL) investigates a challenging but practical scenario where out-of-distribution (OOD) samples are contained in the unlabeled data. While the mainstream technique seeks to completely filter out the OOD samp les for semi-supervised learning (SSL), we propose a novel training mechanism that could effectively exploit the presence of OOD data for enhanced feature learning while avoiding its adverse impact on the SSL. We achieve this goal by first introducing a warm-up training that leverages all the unlabeled data, including both the in-distribution (ID) and OOD samples. Specifically, we perform a pretext task that enforces our feature extractor to obtain a high-level semantic understanding of the training images, leading to more discriminative features that can benefit the downstream tasks. Since the OOD samples are inevitably detrimental to SSL, we propose a novel cross-modal matching strategy to detect OOD samples. Instead of directly applying binary classification, we train the network to predict whether the data sample is matched to an assigned one-hot class label. The appeal of the proposed cross-modal matching over binary classification is the ability to generate a compatible feature space that aligns with the core classification task. Extensive experiments show that our approach substantially lifts the performance on open-set SSL and outperforms the state-of-the-art by a large margin.
157 - Wei Li , Yuanjun Xiong , Shuo Yang 2021
Online tracking of multiple objects in videos requires strong capacity of modeling and matching object appearances. Previous methods for learning appearance embedding mostly rely on instance-level matching without considering the temporal continuity provided by videos. We design a new instance-to-track matching objective to learn appearance embedding that compares a candidate detection to the embedding of the tracks persisted in the tracker. It enables us to learn not only from videos labeled with complete tracks, but also unlabeled or partially labeled videos. We implement this learning objective in a unified form following the spirit of constrastive loss. Experiments on multiple object tracking datasets demonstrate that our method can effectively learning discriminative appearance embeddings in a semi-supervised fashion and outperform state of the art methods on representative benchmarks.
Pseudo-labeling (PL) and Data Augmentation-based Consistency Training (DACT) are two approaches widely used in Semi-Supervised Learning (SSL) methods. These methods exhibit great power in many machine learning tasks by utilizing unlabeled data for ef ficient training. But in a more realistic setting (termed as open-set SSL), where unlabeled dataset contains out-of-distribution (OOD) samples, the traditional SSL methods suffer severe performance degradation. Recent approaches mitigate the negative influence of OOD samples by filtering them out from the unlabeled data. However, it is not clear whether directly removing the OOD samples is the best choice. Furthermore, why PL and DACT could perform differently in open-set SSL remains a mystery. In this paper, we thoroughly analyze various SSL methods (PL and DACT) on open-set SSL and discuss pros and cons of these two approaches separately. Based on our analysis, we propose Style Disturbance to improve traditional SSL methods on open-set SSL and experimentally show our approach can achieve state-of-the-art results on various datasets by utilizing OOD samples properly. We believe our study can bring new insights for SSL research.
Automated segmentation in medical image analysis is a challenging task that requires a large amount of manually labeled data. However, manually annotating medical data is often laborious, and most existing learning-based approaches fail to accurately delineate object boundaries without effective geometric constraints. Contrastive learning, a sub-area of self-supervised learning, has recently been noted as a promising direction in multiple application fields. In this work, we present a novel Contrastive Voxel-wise Representation Learning (CVRL) method with geometric constraints to learn global-local visual representations for volumetric medical image segmentation with limited annotations. Our framework can effectively learn global and local features by capturing 3D spatial context and rich anatomical information. Specifically, we introduce a voxel-to-volume contrastive algorithm to learn global information from 3D images, and propose to perform local voxel-to-voxel contrast to explicitly make use of local cues in the embedding space. Moreover, we integrate an elastic interaction-based active contour model as a geometric regularization term to enable fast and reliable object delineations in an end-to-end learning manner. Results on the Atrial Segmentation Challenge dataset demonstrate superiority of our proposed scheme, especially in a setting with a very limited number of annotated data.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا