ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing jet launching in neutron star X-ray binaries: the variable and polarized jet of SAX J1808.4-3658

92   0   0.0 ( 0 )
 نشر من قبل Maria Cristina Baglio
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on an optical photometric and polarimetric campaign on the accreting millisecond X-ray pulsar (AMXP) SAX J1808.4-3658 during its 2019 outburst. The emergence of a low-frequency excess in the spectral energy distribution in the form of a red excess above the disc spectrum (seen most prominently in z, i and R-bands) is observed as the outburst evolves. This is indicative of optically thin synchrotron emission due to a jet, as seen previously in this source and in other AMXPs during outburst. At the end of the outburst decay, the source entered a reflaring state. The low-frequency excess is still observed during the reflares. Our optical (BVRI) polarimetric campaign shows variable linear polarization (LP) throughout the outburst. We show that this is intrinsic to the source, with low-level but significant detections (0.2-2%) in all bands. The LP spectrum is red during both the main outburst and the reflaring state, favoring a jet origin for this variable polarization over other interpretations, such as Thomson scattering with free electrons from the disc or the propelled matter. During the reflaring state, a few episodes with stronger LP level (1-2 %) are observed. The low-level, variable LP is suggestive of strongly tangled magnetic fields near the base of the jet. These results clearly demonstrate how polarimetry is a powerful tool for probing the magnetic field structure in X-ray binary jets, similar to AGN jets.



قيم البحث

اقرأ أيضاً

Observations of the accretion powered millisecond pulsar SAX J1808.4-3658 have revealed an interesting binary evolution, with the orbit of the system expanding at an accelerated rate. We use the recent finding that the accreted fuel in SAX J1808.4-36 58 is hydrogen depleted to greatly refine models of the progenitor and prior evolution of the binary system. We constrain the initial mass of the companion star to 1.0-1.2 M$_{mathrm{odot}}$, more massive than previous evolutionary studies of this system have assumed. We also infer the system must have undergone strongly non-conservative mass transfer in order to explain the observed orbital period changes. Following Jia & Li (2015), we include mass loss due to the pulsar radiation pressure on the donor star, inducing an evaporative wind which is ejected at the inner Lagrangian point of the binary system. The resulting additional loss of angular momentum resolves the discrepancy between conservative mass transfer models and the observed orbital period derivative of this system. We also include a treatment of donor irradiation due to the accretion luminosity, and find this has a non-negligible effect on the evolution of the system.
143 - Philip Uttley 2003
The aperiodic X-ray variability in neutron star and black hole X-ray binaries (XRBs), and active galactic nuclei (AGN) shows a characteristic linear relationship between rms amplitude and flux, implying a multiplying-together or `coupling of variabil ity on different time-scales. Such a coupling may result from avalanches of flares, due to magnetic reconnection in an X-ray emitting corona. Alternatively this coupling may arise directly from the coupling of perturbations in the accretion flow, which propagate to the inner emitting regions and so modulate the X-ray emission. Here, we demonstrate explicitly that the component of aperiodic variability which carries the rms-flux relation in the accreting millisecond pulsar SAX J1808.4-3658 is also coupled to the 401 Hz pulsation in this source. This result implies that the rms-flux relation in SAX J1808.4-3658 is produced in the accretion flow on to the magnetic caps of the neutron star, and not in a corona. By extension we infer that propagating perturbations in the accretion flow, and not coronal flares, are the source of the rms-flux relations and hence the aperiodic variability in other XRBs and AGN.
Low-mass X-ray binaries (LMXBs) are a natural workbench to study accretion disk phenomena and optimal background sources to measure elemental abundances in the Interstellar medium (ISM). In high-resolution XMM-Newton spectra, the LMXB SAX J1808.4-365 8 showed in the past a neon column density significantly higher than expected given its small distance, presumably due to additional absorption from a neon-rich circumstellar medium (CSM). It is possible to detect intrinsic absorption from the CSM by evidence of Keplerian motions or outflows. For this purpose, we use a recent, deep (100 ks long), high-resolution Chandra/LETGS spectrum of SAX J1808.4-3658 in combination with archival data. We estimated the column densities of the different absorbers through the study of their absorption lines. We used both empirical and physical models involving photo- and collisional-ionization in order to determine the nature of the absorbers. The abundances of the cold interstellar gas match the solar values as expected given the proximity of the X-ray source. For the first time in this source, we detected neon and oxygen blueshifted absorption lines that can be well modeled with outflowing photoionized gas. The wind is neon rich (Ne/O>3) and may originate from processed, ionized gas near the accretion disk or its corona. The kinematics (v=500-1000 km/s) are indeed similar to those seen in other accretion disks. We also discovered a system of emission lines with very high Doppler velocities (v~24000 km/s) originating presumably closer to the compact object. Additional observations and UV coverage are needed to accurately determine the wind abundances and its ionization structure.
Accreting millisecond pulsars show significant variability of their pulse profiles, especially at low accretion rates. On the other hand, their X-ray spectra are remarkably similar with not much variability over the course of the outbursts. For the f irst time, we have discovered that during the 2008 outburst of SAX J1808.4-3658 a major pulse profile change was accompanied by a dramatic variation of the disc luminosity at almost constant total luminosity. We argue that this phenomenon is related to a change in the coupling between the neutron star magnetic field and the accretion disc. The varying size of the pulsar magnetosphere can influence the accretion curtain geometry and affect the shape and the size of the hotspots. Using this physical picture, we develop a self-consistent model that successfully describes simultaneously the pulse profile variation as well as the spectral transition. Our findings are particularly important for testing the theories of accretion onto magnetized neutron stars, better understanding of the accretion geometry as well as the physics of disc-magnetosphere coupling. The identification that varying hotspot size can lead to pulse profile changes has profound implications for determination of the neutron star masses and radii.
Based on the model of the accretion-induced magnetic field decay of a neutron star (NS), millisecond pulsars (MSPs) will obtain their minimum magnetic field when the NS magnetosphere radius shrinks to the stellar surface during the binary accretion p hase. We find that this minimummagnetic field is related to the accretion rate Mdot as Bmin ~2.0*10^7 G( Mdot/Mdot_min)^1/2, where Mdot_min = 4.6*10^15 g/s is the average minimum accretion rate required for MSP formation and is constrained by the long-term accretion time, which corresponds to the companion lifetime, being less than the Hubble time. The value of Bmin is consistent with that of observed radio MSPs and accreting MSPs in low-mass X-ray binaries, which can be found the illustrated case of the minimum and present field strength of SAX J1808.4-3658. The prediction of the minimum magnetic field of MSPs would be the lowest field strength of NSs in the Universe, which could constrain the evolution mechanism of the magnetic field of accreting NSs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا