ترغب بنشر مسار تعليمي؟ اضغط هنا

The minimum magnetic field of millisecond pulsars calculated according to accretion: application to the X-ray neutron star SAX J1808.4-3658 in a low-mass X-ray binary

121   0   0.0 ( 0 )
 نشر من قبل Yuanyue Pan
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Based on the model of the accretion-induced magnetic field decay of a neutron star (NS), millisecond pulsars (MSPs) will obtain their minimum magnetic field when the NS magnetosphere radius shrinks to the stellar surface during the binary accretion phase. We find that this minimummagnetic field is related to the accretion rate Mdot as Bmin ~2.0*10^7 G( Mdot/Mdot_min)^1/2, where Mdot_min = 4.6*10^15 g/s is the average minimum accretion rate required for MSP formation and is constrained by the long-term accretion time, which corresponds to the companion lifetime, being less than the Hubble time. The value of Bmin is consistent with that of observed radio MSPs and accreting MSPs in low-mass X-ray binaries, which can be found the illustrated case of the minimum and present field strength of SAX J1808.4-3658. The prediction of the minimum magnetic field of MSPs would be the lowest field strength of NSs in the Universe, which could constrain the evolution mechanism of the magnetic field of accreting NSs.



قيم البحث

اقرأ أيضاً

We have observed the millisecond X-ray pulsar SAX J1808.4-3658 on three occasions during its 2000 outburst with the BeppoSAX satellite. The source was highly variable and erratic during this outburst, and by coincidence we obtained data only during t imes when the source had very low luminosities. During our observations, we detected four faint sources. The source closest to the position of SAX J1808.4-3658 is still ~1.6 away. This source can only be identified with SAX J1808.4-3658 if we assume that the BeppoSAX positional reconstruction is not completely understood. We also reanalyzed a BeppoSAX observation taken in March 1999 when the source was in quiescence and during which the source was thought to have been detected (Stella et al. 2000). Based on the similarities (position and luminosity) of this source with the above mentioned source ~1.6 away from SAX J1808.4-3658, it is possible that they are the same source. If this source is not the millisecond pulsar, then during all BeppoSAX observations of SAX J1808.4-3658 (the 2000 outburst ones and the 1999 quiescent one), the millisecond pulsar was not detected. A reanalysis of the ASCA quiescent data of SAX J1808.4-3658 (Dotani, Asai, & Wijnands 2000) confirms that during this observation the source was securely detected in quiescence. We discuss our results for SAX J1808.4-3658 in the context of the quiescent properties of low-mass X-ray binary transients.
We report on an optical photometric and polarimetric campaign on the accreting millisecond X-ray pulsar (AMXP) SAX J1808.4-3658 during its 2019 outburst. The emergence of a low-frequency excess in the spectral energy distribution in the form of a red excess above the disc spectrum (seen most prominently in z, i and R-bands) is observed as the outburst evolves. This is indicative of optically thin synchrotron emission due to a jet, as seen previously in this source and in other AMXPs during outburst. At the end of the outburst decay, the source entered a reflaring state. The low-frequency excess is still observed during the reflares. Our optical (BVRI) polarimetric campaign shows variable linear polarization (LP) throughout the outburst. We show that this is intrinsic to the source, with low-level but significant detections (0.2-2%) in all bands. The LP spectrum is red during both the main outburst and the reflaring state, favoring a jet origin for this variable polarization over other interpretations, such as Thomson scattering with free electrons from the disc or the propelled matter. During the reflaring state, a few episodes with stronger LP level (1-2 %) are observed. The low-level, variable LP is suggestive of strongly tangled magnetic fields near the base of the jet. These results clearly demonstrate how polarimetry is a powerful tool for probing the magnetic field structure in X-ray binary jets, similar to AGN jets.
Neutron Stars are among the most exotic objects in the Universe. A neutron star, with a mass of 1.4-2 Solar masses within a radius of about 10-15 km, is the most compact stable configuration of matter in which degeneracy pressure can still balance gr avity, since further compression would lead to gravitational collapse and formation of a black hole. As gravity is extreme, rotation is extreme: neutron stars are the fastest rotating stars known, with periods as short as a millisecond. The presence of a magnetic field not aligned with the rotation axis of the star is the origin of pulsating emission from these sources, which for this reason are dubbed pulsars. The discovery in 1998 of the first Accreting Millisecond X-ray Pulsar, started an exciting season of continuing discoveries. In the last 20 years, thanks to the extraordinary performance of astronomical detectors in the radio, optical, X-ray, and Gamma-ray bands, astrophysicists had the opportunity to thoroughly investigate the so-called Recycling Scenario: the evolutionary path leading to the formation of a Millisecond-spinning Pulsar. In this chapter we review the general properties of Accreting Millisecond X-ray Pulsars, which provide the first evidence that neutron stars are spun up to millisecond periods by accretion of matter and angular momentum from a (low-mass) companion star. We describe the general characteristics of this class of systems with particular attention to their spin and orbital parameters, their short-term and long-term evolution, as well as the information that can be drawn from their X-ray spectra.
74 - Wei Cui , 1998
We report the discovery of phase shifts between X-ray pulses at different energies in the newly discovered millisecond (ms) X-ray pulsar SAX J1808.4-3658. The results show that low-energy pulses lag high-energy pulses by as much as $sim$0.2 ms (or $s im$8% of the pulse period). The measurements were made in two different ways: (1) computing cross power spectra between different energy bands, and (2) cross-correlating the folded pulse profiles in different energy bands; consistent results were obtained. We speculate that the observed soft lags might be related to the lateral expansion and subsequent cooling of a ``hot spot on the neutron star surface in which the pulsed X-ray emission originates. Also presented is the possibility of producing soft lags via Compton down scattering of hard X-ray photons from the hot spot in the cool surrounding atmosphere. We will discuss possible X-ray production mechanisms for SAX J1808.4-3658 and constraints on the emission environment, based on the observed soft lags, pulse profiles, and energy spectrum.
We report on optical imaging of the X-ray binary SAX J1808.4-3658 with the 8-m Gemini South Telescope. The binary, containing an accretion-powered millisecond pulsar, appears to have a large periodic modulation in its quiescent optical emission. In o rder to clarify the origin of this modulation, we obtained three time-resolved $r$-band light curves (LCs) of the source in five days. The LCs can be described by a sinusoid, and the long time-span between them allows us to determine optical period P=7251.9 s and phase 0.671 at MJD 54599.0 (TDB; phase 0.0 corresponds to the ascending node of the pulsar orbit), with uncertainties of 2.8 s and 0.008 (90 % confidence), respectively. This periodicity is highly consistent with the X-ray orbital ephemeris. By considering this consistency and the sinusoidal shape of the LCs, we rule out the possibility of the modulation arising from the accretion disk. Our study supports the previous suggestion that the X-ray pulsar becomes rotationally powered in quiescence, with its energy output irradiating the companion star, causing the optical modulation. While it has also been suggested that the accretion disk would be evaporated by the pulsar, we argue that the disk exists and gives rise to the persistent optical emission. The existence of the disk can be verified by long-term, multi-wavelength optical monitoring of the source in quiescence, as an increasing flux and spectral changes from the source would be expected based on the standard disk instability model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا