ﻻ يوجد ملخص باللغة العربية
Low-mass X-ray binaries (LMXBs) are a natural workbench to study accretion disk phenomena and optimal background sources to measure elemental abundances in the Interstellar medium (ISM). In high-resolution XMM-Newton spectra, the LMXB SAX J1808.4-3658 showed in the past a neon column density significantly higher than expected given its small distance, presumably due to additional absorption from a neon-rich circumstellar medium (CSM). It is possible to detect intrinsic absorption from the CSM by evidence of Keplerian motions or outflows. For this purpose, we use a recent, deep (100 ks long), high-resolution Chandra/LETGS spectrum of SAX J1808.4-3658 in combination with archival data. We estimated the column densities of the different absorbers through the study of their absorption lines. We used both empirical and physical models involving photo- and collisional-ionization in order to determine the nature of the absorbers. The abundances of the cold interstellar gas match the solar values as expected given the proximity of the X-ray source. For the first time in this source, we detected neon and oxygen blueshifted absorption lines that can be well modeled with outflowing photoionized gas. The wind is neon rich (Ne/O>3) and may originate from processed, ionized gas near the accretion disk or its corona. The kinematics (v=500-1000 km/s) are indeed similar to those seen in other accretion disks. We also discovered a system of emission lines with very high Doppler velocities (v~24000 km/s) originating presumably closer to the compact object. Additional observations and UV coverage are needed to accurately determine the wind abundances and its ionization structure.
During the September-October 2008 outburst of the accreting millisecond pulsar SAX J1808.4-3658, the source was observed by both Suzaku and XMM-Newton approximately 1 day apart. Spectral analysis reveals a broad relativistic Fe K-alpha emission line
We present a timing analysis of the 2015 outburst of the accreting millisecond X-ray pulsar SAX J1808.4-3658, using non-simultaneous XMM-Newton and NuStar observations. We estimate the pulsar spin frequency and update the system orbital solution. Com
An evolutionary scenario to explain the transient nature and short total duration of the X-ray burst of SAX J1808.4 -- 3658 is proposed. An optical companion of the neutron star (a ``turn-off Main - Sequence star) fills its Roche lobe at the orbital
We report the detection of a possible gamma-ray counterpart of the accreting millisecond pulsar SAX J1808.4-3658. The analysis of ~6 years of data from the Large Area Telescope on board the Fermi Gamma-ray Space Telescope (Fermi-LAT) within a region
Observations of the accretion powered millisecond pulsar SAX J1808.4-3658 have revealed an interesting binary evolution, with the orbit of the system expanding at an accelerated rate. We use the recent finding that the accreted fuel in SAX J1808.4-36