ﻻ يوجد ملخص باللغة العربية
The spectral and dynamical properties of dissipative quantum systems, as modeled by a damped oscillator in the Fock space, are investigated from a topological point of view. Unlike a physical lattice system that is naturally under the open boundary condition, the bounded-from-below nature of the Fock space offers a unique setting for understanding and verifying non-Hermitian skin modes under semi-infinity boundary conditions that are elusive in actual physical lattices. A topological characterization based on the complex spectra of the Liouvillian superoperator is proposed and the associated complete set of topologically protected skin modes can be identified, thus reflecting the complete bulk-boundary correspondence of point-gap topology generally absent in realistic materials. Moreover, we discover anomalous skin modes with exponential amplification even though the quantum system is purely dissipative. Our results indicate that current studies of non-Hermitian topological matter can greatly benefit research on quantum open systems and vice versa.
Describing current in open quantum systems can be problematic due to the subtle interplay of quantum coherence and environmental noise. Probing the noise-induced current can be detrimental to the tunneling-induced current and vice versa. We derive a
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories. The latter emerge in the unraveling of Markovian quantum master equations and/or in continuous quantum measurements. Ensemble-averaging quantum trajector
In this work, we study the disorder effects on the bulk-boundary correspondence of two-dimensional higher-order topological insulators (HOTIs). We concentrate on two cases: (i) bulk-corner correspondence, (ii) edge-corner correspondence. For the bulk
Odd-frequency Cooper pairs with chiral symmetry emerging at the edges of topological superconductors are a useful physical quantity for characterizing the topological properties of these materials. In this work, we show that the odd-frequency Cooper
Bulk-boundary correspondence, a central principle in topological matter relating bulk topological invariants to edge states, breaks down in a generic class of non-Hermitian systems that have so far eluded experimental effort. Here we theoretically pr