ﻻ يوجد ملخص باللغة العربية
Odd-frequency Cooper pairs with chiral symmetry emerging at the edges of topological superconductors are a useful physical quantity for characterizing the topological properties of these materials. In this work, we show that the odd-frequency Cooper pair amplitudes can be expressed by a winding number extended to a nonzero frequency, which is called a `spectral bulk-boundary correspondence, and can be evaluated from the spectral features of the bulk. The odd-frequency Cooper pair amplitudes are classified into two categories: the amplitudes in the first category have the singular functional form $sim 1/z$ (where $z$ is a complex frequency) that reflects the presence of a topological surface Andreev bound state, whereas the amplitudes in the second category have the regular form $sim z$ and are regarded as non-topological. We discuss the topological phase transition by using the coefficient in the latter category, which undergoes a power-law divergence at the topological phase transition point and is used to indicate the distance to the critical point. These concepts are established based on several concrete models, including a Rashba nanowire system that is promising for realizing Majorana fermions.
In this work, we study the disorder effects on the bulk-boundary correspondence of two-dimensional higher-order topological insulators (HOTIs). We concentrate on two cases: (i) bulk-corner correspondence, (ii) edge-corner correspondence. For the bulk
We study a link between the ground-state topology and the topology of the lattice via the presence of anomalous states at disclinations -- topological lattice defects that violate a rotation symmetry only locally. We first show the existence of anoma
We study the effect of the Fermi surface anisotropy on the odd-frequency spin-triplet pairing component of the induced pair potential. We consider a superconductor/ ferromagnetic insulator (S/FI) hybrid structure formed on the 3D topological insulato
The bulk-boundary correspondence in one dimension asserts that the physical quantities defined in the bulk and at the edge are connected, as well established in the argument for electric polarization. Recently, a spectral bulk-boundary correspondence
We theoretically study the magnetization inside a normal metal induced in an s-wave superconductor/ferromagnetic metal/normal metal/ferromagnetic metal/s-wave superconductor (S/F1/N/F2/S) Josephson junction. Using quasiclassical Greens function metho