ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum current in dissipative systems

76   0   0.0 ( 0 )
 نشر من قبل Karen Hovhannisyan
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Describing current in open quantum systems can be problematic due to the subtle interplay of quantum coherence and environmental noise. Probing the noise-induced current can be detrimental to the tunneling-induced current and vice versa. We derive a general theory for the probability current in quantum systems arbitrarily interacting with their environment that overcomes this difficulty. We show that the current can be experimentally measured by performing a sequence of weak and standard quantum measurements. We exemplify our theory by analyzing a simple Smoluchowski-Feynman-type ratchet consisting of two particles, operating deep in the quantum regime. Fully incorporating both thermal and quantum effects, the current generated in the model can be used to detect the onset of genuine quantumness in the form of quantum contextuality. The model can also be used to generate steady-state entanglement in the presence of arbitrarily hot environment.



قيم البحث

اقرأ أيضاً

By example of the nonlinear Kerr-mode driven by a laser, we show that hysteresis phenomena in systems featuring a driven-dissipative phase transition (DPT) can be accurately described in terms of just two collective, dissipative Liouvillian eigenmode s. The key quantities are just two components of a nonabelian geometric connection, even though a single parameter is driven. This powerful geometric approach considerably simplifies the description of driven-dissipative phase transitions, extending the range of computationally accessible parameter regimes, and providing a new starting point for both experimental studies and analytical insights.
49 - Jian-Song Pan , Linhu Li , 2020
The spectral and dynamical properties of dissipative quantum systems, as modeled by a damped oscillator in the Fock space, are investigated from a topological point of view. Unlike a physical lattice system that is naturally under the open boundary c ondition, the bounded-from-below nature of the Fock space offers a unique setting for understanding and verifying non-Hermitian skin modes under semi-infinity boundary conditions that are elusive in actual physical lattices. A topological characterization based on the complex spectra of the Liouvillian superoperator is proposed and the associated complete set of topologically protected skin modes can be identified, thus reflecting the complete bulk-boundary correspondence of point-gap topology generally absent in realistic materials. Moreover, we discover anomalous skin modes with exponential amplification even though the quantum system is purely dissipative. Our results indicate that current studies of non-Hermitian topological matter can greatly benefit research on quantum open systems and vice versa.
We propose a dissipative method for the preparation of many-body steady entangled states in spin and fermionic chains. The scheme is accomplished by means of an engineered set of Lindbladians acting over the eigenmodes of the system, whose spectrum i s assumed to be resolvable. We apply this idea to prepare a particular entangled state of a spin chain described by the XY model, emphasizing its generality and experimental feasibility. Our results show that our proposal is capable of achieving high fidelities and purities for a given target state even when dephasing and thermal dissipative processes are taken into account. Moreover, the method exhibits a remarkable robustness against fluctuations in the model parameters.
We present a quantum algorithm to simulate general finite dimensional Lindblad master equations without the requirement of engineering the system-environment interactions. The proposed method is able to simulate both Markovian and non-Markovian quant um dynamics. It consists in the quantum computation of the dissipative corrections to the unitary evolution of the system of interest, via the reconstruction of the response functions associated with the Lindblad operators. Our approach is equally applicable to dynamics generated by effectively non-Hermitian Hamiltonians. We confirm the quality of our method providing specific error bounds that quantify itss accuracy.
In experimentally realistic situations, quantum systems are never perfectly isolated and the coupling to their environment needs to be taken into account. Often, the effect of the environment can be well approximated by a Markovian master equation. H owever, solving this master equation for quantum many-body systems, becomes exceedingly hard due to the high dimension of the Hilbert space. Here we present an approach to the effective simulation of the dynamics of open quantum many-body systems based on machine learning techniques. We represent the mixed many-body quantum states with neural networks in the form of restricted Boltzmann machines and derive a variational Monte-Carlo algorithm for their time evolution and stationary states. We document the accuracy of the approach with numerical examples for a dissipative spin lattice system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا