ﻻ يوجد ملخص باللغة العربية
Describing current in open quantum systems can be problematic due to the subtle interplay of quantum coherence and environmental noise. Probing the noise-induced current can be detrimental to the tunneling-induced current and vice versa. We derive a general theory for the probability current in quantum systems arbitrarily interacting with their environment that overcomes this difficulty. We show that the current can be experimentally measured by performing a sequence of weak and standard quantum measurements. We exemplify our theory by analyzing a simple Smoluchowski-Feynman-type ratchet consisting of two particles, operating deep in the quantum regime. Fully incorporating both thermal and quantum effects, the current generated in the model can be used to detect the onset of genuine quantumness in the form of quantum contextuality. The model can also be used to generate steady-state entanglement in the presence of arbitrarily hot environment.
By example of the nonlinear Kerr-mode driven by a laser, we show that hysteresis phenomena in systems featuring a driven-dissipative phase transition (DPT) can be accurately described in terms of just two collective, dissipative Liouvillian eigenmode
The spectral and dynamical properties of dissipative quantum systems, as modeled by a damped oscillator in the Fock space, are investigated from a topological point of view. Unlike a physical lattice system that is naturally under the open boundary c
We propose a dissipative method for the preparation of many-body steady entangled states in spin and fermionic chains. The scheme is accomplished by means of an engineered set of Lindbladians acting over the eigenmodes of the system, whose spectrum i
We present a quantum algorithm to simulate general finite dimensional Lindblad master equations without the requirement of engineering the system-environment interactions. The proposed method is able to simulate both Markovian and non-Markovian quant
In experimentally realistic situations, quantum systems are never perfectly isolated and the coupling to their environment needs to be taken into account. Often, the effect of the environment can be well approximated by a Markovian master equation. H