ترغب بنشر مسار تعليمي؟ اضغط هنا

Equilibrium free energies from non-equilibrium metadynamics

127   0   0.0 ( 0 )
 نشر من قبل Giovanni Bussi
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we propose a new formalism to map history-dependent metadynamics in a Markovian process. We apply this formalism to a model Langevin dynamics and determine the equilibrium distribution of a collection of simulations. We demonstrate that the reconstructed free energy is an unbiased estimate of the underlying free energy and analytically derive an expression for the error. The present results can be applied to other history-dependent stochastic processes such as Wang-Landau sampling.



قيم البحث

اقرأ أيضاً

The Jarzynski identity can be applied to instances when a microscopic system is pulled repeatedly but quickly along some coordinate, allowing the calculation of an equilibrium free energy profile along the pulling coordinate from a set of independent non-equilibrium trajectories. Using the formalism of Wiener stochastic path integrals in which we assign temperature-dependent weights to Langevin trajectories, we derive exact formulae for the temperature derivatives of the free energy profile. This leads naturally to analytical expressions for decomposing a free energy profile into equilibrium entropy and internal energy profiles from non-equilibrium pulling. This decomposition can be done from trajectories evolved at a unique temperature without repeating the measurement as done in finite-difference decompositions. Three distinct analytical expressions for the entropy-energy decomposition are derived: using a time-dependent generalization of the weighted histogram analysis method, a quasi harmonic spring limit, and a Feynman-Kac formula. The three novel formulae of reconstructing the pair of entropy-energy profiles are exemplified by Langevin simulations of a two-dimensional model system prototypical for force-induced biomolecular conformational changes. Connections to single-molecule experimental means to probe the functionals needed in the decomposition are suggested.
We consider the defect production of a quantum system, initially prepared in a current-carrying non-equilibrium state, during its unitary driving through a quantum critical point. At low values of the initial current, the quantum Kibble-Zurek scaling for the production of defects is recovered. However, at large values of the initial current, i.e., very far from an initial equilibrium situation, a universal scaling of the defect production is obtained which shows an algebraic dependence with respect to the initial current value. These scaling predictions are demonstrated by the exactly solvable Ising quantum chain where the current-carrying state is selected through the imposition of a Dzyaloshinskii-Moriya interaction term.
Using the recently constructed covariant Ito-Langevin dynamics, we develop a covariant theory of non-equilibrium thermodynamics that is applicable to small systems with multiplicative noises and with slow variables forming curved manifolds. Assuming instantaneous detailed balance, we derive expressions for work, heat, entropy production, and free energy both at ensemble level, as well as at the level of individual dynamic trajectory. We also relate time-reversal asymmetry to entropy production, and derive its consequences such as fluctuation theorem and work relation. The theory is based on Ito-calculus, is fully covariant under time-independent nonlinear transformation of variables, and is applicable to systems strongly coupled to environments.
The 1970 paper, Decay of the Velocity Correlation Function [Phys. Rev. A1, 18 (1970), see also Phys. Rev. Lett. 18, 988 (1967)] by Berni Alder and Tom Wainwright, demonstrated, by means of computer simulations, that the velocity autocorrelation funct ion for a particle in a gas of hard disks decays algebraically in time as $t^{-1},$ and as $t^{-3/2}$ for a gas of hard spheres. These decays appear in non-equilibrium fluids and have no counterpart in fluids in thermodynamic equilibrium. The work of Alder and Wainwright stimulated theorists to find explanations for these long time tails using kinetic theory or a mesoscopic mode-coupling theory. This paper has had a profound influence on our understanding of the non-equilibrium properties of fluid systems. Here we discuss the kinetic origins of the long time tails, the microscopic foundations of mode-coupling theory, and the implications of these results for the physics of fluids. We also mention applications of the long time tails and mode-coupling theory to other, seemingly unrelated, fields of physics. We are honored to dedicate this short review to Berni Alder on the occasion of his 90th birthday!
We study the structure of stationary non equilibrium states for interacting particle systems from a microscopic viewpoint. In particular we discuss two different discrete geometric constructions. We apply both of them to determine non reversible tran sition rates corresponding to a fixed invariant measure. The first one uses the equivalence of this problem with the construction of divergence free flows on the transition graph. Since divergence free flows are characterized by cyclic decompositions we can generate families of models from elementary cycles on the configuration space. The second construction is a functional discrete Hodge decomposition for translational covariant discrete vector fields. According to this, for example, the instantaneous current of any interacting particle system on a finite torus can be canonically decomposed in a gradient part, a circulation term and an harmonic component. All the three components are associated to functions on the configuration space. This decomposition is unique and constructive. The stationary condition can be interpreted as an orthogonality condition with respect to an harmonic discrete vector field and we use this decomposition to construct models having a fixed invariant measure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا