This paper is an exposition and review of the research related to the Riemann Hypothesis starting from the work of Riemann and ending with a description of the work of G. Spencer-Brown.
This is an English translation of the Latin original De summa seriei ex numeris primis formatae ${1/3}-{1/5}+{1/7}+{1/11}-{1/13}-{1/17}+{1/19}+{1/23}-{1/29}+{1/31}-$ etc. ubi numeri primi formae $4n-1$ habent signum positivum formae autem $4n+1$ sign
um negativum (1775). E596 in the Enestrom index. Let $chi$ be the nontrivial character modulo 4. Euler wants to know what $sum_p chi(p)/p$ is, either an exact expression or an approximation. He looks for analogies to the harmonic series and the series of reciprocals of the primes. Another reason he is interested in this is that if this series has a finite value (which is does, the best approximation Euler gets is 0.3349816 in section 27) then there are infinitely many primes congruent to 1 mod 4 and infinitely many primes congruent to 3 mod 4. In section 15 Euler gives the Euler product for the L(chi,1). As a modern mathematical appendix appendix, I have written a proof following Davenport that the series $sum_p frac{chi(p)}{p}$ converges. This involves applications of summation by parts, and uses Chebyshevs estimate for the second Chebyshev function (summing the von Mangoldt function).
Physicists become acquainted with special functions early in their studies. Consider our perennial model, the harmonic oscillator, for which we need Hermite functions, or the Laguerre functions in quantum mechanics. Here we choose a particular number
theoretical function, the Riemann zeta function and examine its influence in the realm of physics and also how physics may be suggestive for the resolution of one of mathematics most famous unconfirmed conjectures, the Riemann Hypothesis. Does physics hold an essential key to the solution for this more than hundred-year-old problem? In this work we examine numerous models from different branches of physics, from classical mechanics to statistical physics, where this function plays an integral role. We also see how this function is related to quantum chaos and how its pole-structure encodes when particles can undergo Bose-Einstein condensation at low temperature. Throughout these examinations we highlight how physics can perhaps shed light on the Riemann Hypothesis. Naturally, our aim could not be to be comprehensive, rather we focus on the major models and aim to give an informed starting point for the interested Reader.
In this article, we will prove Riemann Hypothesis by using the mean value theorem of integrals. The function $ xi(s) $ is introduced by Riemann, which zeros are identical equal to non-trivial zeros of zeta function.The function $ xi(s) $ is an entire
function, and its real part and imaginary part can be represented as infinite integral form. In the special condition, the mean value theorem of integrals is established for infinite integral. Using the mean value theorem of integrals and the isolation of zeros of analytic function, we determined that all zeros of the function $ xi(s) $ have real part equal to$frac{1}{2}$, namely, all non-trivial zeros of zeta function lies on the critical line. Riemann Hypothesis is true.
Throughout more than two millennia many formulas have been obtained, some of them beautiful, to calculate the number pi. Among them, we can find series, infinite products, expansions as continued fractions and expansions using radicals. Some expressi
ons which are (amazingly) related to pi have been evaluated. In addition, a continual battle has been waged just to break the records computing digits of this number; records have been set using rapidly converging series, ultra fast algorithms and really surprising ones, calculating isolated digits. The development of powerful computers has played a fundamental role in these achievements of calculus.