ترغب بنشر مسار تعليمي؟ اضغط هنا

On the sum of the series formed from the prime numbers where the prime numbers of the form $4n-1$ have a positive sign and those of the form $4n+1$ a negative sign

261   0   0.0 ( 0 )
 نشر من قبل Jordan Bell
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English
 تأليف Leonhard Euler




اسأل ChatGPT حول البحث

This is an English translation of the Latin original De summa seriei ex numeris primis formatae ${1/3}-{1/5}+{1/7}+{1/11}-{1/13}-{1/17}+{1/19}+{1/23}-{1/29}+{1/31}-$ etc. ubi numeri primi formae $4n-1$ habent signum positivum formae autem $4n+1$ signum negativum (1775). E596 in the Enestrom index. Let $chi$ be the nontrivial character modulo 4. Euler wants to know what $sum_p chi(p)/p$ is, either an exact expression or an approximation. He looks for analogies to the harmonic series and the series of reciprocals of the primes. Another reason he is interested in this is that if this series has a finite value (which is does, the best approximation Euler gets is 0.3349816 in section 27) then there are infinitely many primes congruent to 1 mod 4 and infinitely many primes congruent to 3 mod 4. In section 15 Euler gives the Euler product for the L(chi,1). As a modern mathematical appendix appendix, I have written a proof following Davenport that the series $sum_p frac{chi(p)}{p}$ converges. This involves applications of summation by parts, and uses Chebyshevs estimate for the second Chebyshev function (summing the von Mangoldt function).



قيم البحث

اقرأ أيضاً

We present in this work a heuristic expression for the density of prime numbers. Our expression leads to results which possesses approximately the same precision of the Riemanns function in the domain that goes from 2 to 1010 at least. Instead of usi ng a constant as was done by Legendre and others in the formula of Gauss, we try to adjust the data through a function. This function has the remarkable property: its points of discontinuity are the prime numbers.
A number which is S.P in base r is a positive integer which is equal to the sum of its base-r digits multiplied by the product of its base-r digits. These numbers have been studied extensively in The Mathematical Gazette. Recently, Shah Ali obtained the first effective bound on the sizes of S.P numbers. Modifying Shah Alis method, we obtain an improved bound on the number of digits in a base-r S.P number. Our bound is the first sharp bound found for the case r=2.
This paper is an exposition and review of the research related to the Riemann Hypothesis starting from the work of Riemann and ending with a description of the work of G. Spencer-Brown.
Prime Numbers clearly accumulate on defined spiral graphs,which run through the Square Root Spiral. These spiral graphs can be assigned to different spiral-systems, in which all spiral-graphs have the same direction of rotation and the same -- second difference -- between the numbers, which lie on these spiral-graphs. A mathematical analysis shows, that these spiral graphs are caused exclusively by quadratic polynomials. For example the well known Euler Polynomial x2+x+41 appears on the Square Root Spiral in the form of three spiral-graphs, which are defined by three different quadratic polynomials. All natural numbers,divisible by a certain prime factor, also lie on defined spiral graphs on the Square Root Spiral (or Spiral of Theodorus, or Wurzelspirale). And the Square Numbers 4, 9, 16, 25, 36 even form a highly three-symmetrical system of three spiral graphs, which divides the square root spiral into three equal areas. Fibonacci number sequences also play a part in the structure of the Square Root Spiral. With the help of the Number-Spiral, described by Mr. Robert Sachs, a comparison can be drawn between the Square Root Spiral and the Ulam Spiral. The shown sections of his study of the number spiral contain diagrams, which are related to my analysis results, especially in regards to the distribution of prime numbers.
Dirichlets proof of infinitely many primes in arithmetic progressions was published in 1837, introduced L-series for the first time, and it is said to have started rigorous analytic number theory. Dirichlet uses Eulers earlier work on the zeta functi on and the distribution of primes. He first proves a simpler case before going to full generality. The paper was translated from German by R. Stephan and given a reference section.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا