ﻻ يوجد ملخص باللغة العربية
This is an English translation of the Latin original De summa seriei ex numeris primis formatae ${1/3}-{1/5}+{1/7}+{1/11}-{1/13}-{1/17}+{1/19}+{1/23}-{1/29}+{1/31}-$ etc. ubi numeri primi formae $4n-1$ habent signum positivum formae autem $4n+1$ signum negativum (1775). E596 in the Enestrom index. Let $chi$ be the nontrivial character modulo 4. Euler wants to know what $sum_p chi(p)/p$ is, either an exact expression or an approximation. He looks for analogies to the harmonic series and the series of reciprocals of the primes. Another reason he is interested in this is that if this series has a finite value (which is does, the best approximation Euler gets is 0.3349816 in section 27) then there are infinitely many primes congruent to 1 mod 4 and infinitely many primes congruent to 3 mod 4. In section 15 Euler gives the Euler product for the L(chi,1). As a modern mathematical appendix appendix, I have written a proof following Davenport that the series $sum_p frac{chi(p)}{p}$ converges. This involves applications of summation by parts, and uses Chebyshevs estimate for the second Chebyshev function (summing the von Mangoldt function).
We present in this work a heuristic expression for the density of prime numbers. Our expression leads to results which possesses approximately the same precision of the Riemanns function in the domain that goes from 2 to 1010 at least. Instead of usi
A number which is S.P in base r is a positive integer which is equal to the sum of its base-r digits multiplied by the product of its base-r digits. These numbers have been studied extensively in The Mathematical Gazette. Recently, Shah Ali obtained
This paper is an exposition and review of the research related to the Riemann Hypothesis starting from the work of Riemann and ending with a description of the work of G. Spencer-Brown.
Prime Numbers clearly accumulate on defined spiral graphs,which run through the Square Root Spiral. These spiral graphs can be assigned to different spiral-systems, in which all spiral-graphs have the same direction of rotation and the same -- second
Dirichlets proof of infinitely many primes in arithmetic progressions was published in 1837, introduced L-series for the first time, and it is said to have started rigorous analytic number theory. Dirichlet uses Eulers earlier work on the zeta functi