ﻻ يوجد ملخص باللغة العربية
Similar to light, gravitational waves (GWs) can be lensed. Such lensing phenomena can magnify the waves, create multiple images observable as repeated events, and superpose several waveforms together, inducing potentially discernible patterns on the waves. In particular, when the lens is small, $lesssim 10^5 M_odot$, it can produce lensed images with time delays shorter than the typical gravitational-wave signal length that conspire together to form ``beating patterns. We present a proof-of-principle study utilizing deep learning for identification of such a lensing signature. We bring the excellence of state-of-the-art deep learning models at recognizing foreground objects from background noises to identifying lensed GWs from noise present spectrograms. We assume the lens mass is around $10^3 M_odot$ -- $10^5 M_odot$, which can produce the order of millisecond time delays between two images of lensed GWs. We discuss the feasibility of distinguishing lensed GWs from unlensed ones and estimating physical and lensing parameters. Suggested method may be of interest to the study of more complicated lensing configurations for which we do not have accurate waveform templates.
In general relativity (GR), gravitational waves (GWs) propagate the well-known plus and cross polarization modes which are the signature of a massless spin-2 field. However, diffraction of GWs caused by intervening objects along the line of sight can
Gravitational wave detectors are already operating at interesting sensitivity levels, and they have an upgrade path that should result in secure detections by 2014. We review the physics of gravitational waves, how they interact with detectors (bars
Assessing the probability that two or more gravitational waves (GWs) are lensed images of the same source requires an understanding of the image properties, including their relative phase shifts in strong lensing (SL). For non-precessing, circular bi
We present a first proof-of-principle study for using deep neural networks (DNNs) as a novel search method for continuous gravitational waves (CWs) from unknown spinning neutron stars. The sensitivity of current wide-parameter-space CW searches is li
The recent direct observation of gravitational waves (GW) from merging black holes opens up the possibility of exploring the theory of gravity in the strong regime at an unprecedented level. It is therefore interesting to explore which extensions to